The beauty of symmetry: siRNA phosphorodithioate modifications reduce stereocomplexity, ease analysis, and can improve in vivo potency

IF 6.5 2区 医学 Q1 MEDICINE, RESEARCH & EXPERIMENTAL
Sophie Schöllkopf, Stefan Rathjen, Micaela Graglia, Nina Was, Eliot Morrison, Adrien Weingärtner, Lucas Bethge, Judith Hauptmann, Marie Wikström Lindholm
{"title":"The beauty of symmetry: siRNA phosphorodithioate modifications reduce stereocomplexity, ease analysis, and can improve in vivo potency","authors":"Sophie Schöllkopf, Stefan Rathjen, Micaela Graglia, Nina Was, Eliot Morrison, Adrien Weingärtner, Lucas Bethge, Judith Hauptmann, Marie Wikström Lindholm","doi":"10.1016/j.omtn.2024.102336","DOIUrl":null,"url":null,"abstract":"Phosphorothioates (PSs) can be essential in stabilizing therapeutic oligonucleotides against enzymatic degradation. However, unless synthesis is performed with stereodefined amidites, each PS introduces a chemically undefined stereocenter, resulting in 2<ce:sup loc=\"post\"><ce:italic>n</ce:italic></ce:sup> unique molecules in the final product and affecting downstream analytics and purification. Replacing the second non-bridging oxygen with sulfur results in phosphorodithioate (PS2) linkages, thereby removing the stereocenter. We describe synthesis and analytical data for <ce:italic>N</ce:italic>-acetylgalactosamine (GalNAc)-conjugated small interfering RNAs (siRNAs) with PS2 in the GalNAc cluster and at the siRNA termini. All siRNA conjugates with PS2 internucleotide linkages were produced with good yield and showed improved analytical properties. PS2 in the GalNAc cluster had no, or only minor, effect on <ce:italic>in vitro</ce:italic> and <ce:italic>in vivo</ce:italic> activity. Except for the 5′-antisense position, PS2 modifications were well tolerated at the siRNA termini, and a single PS2 internucleotide linkage gave similar or improved stabilization and <ce:italic>in vitro</ce:italic> activity as the two PSs typically used for end stabilization. Surprisingly, several of the PS2-containing siRNA conjugates resulted in increased <ce:italic>in vivo</ce:italic> activity and duration of action compared to the same siRNA sequence stabilized with PS linkages, suggesting PS2 linkages as interesting options for siRNA strand design with a reduced number of undefined stereocenters.","PeriodicalId":18821,"journal":{"name":"Molecular Therapy. Nucleic Acids","volume":null,"pages":null},"PeriodicalIF":6.5000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Therapy. Nucleic Acids","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.omtn.2024.102336","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Phosphorothioates (PSs) can be essential in stabilizing therapeutic oligonucleotides against enzymatic degradation. However, unless synthesis is performed with stereodefined amidites, each PS introduces a chemically undefined stereocenter, resulting in 2n unique molecules in the final product and affecting downstream analytics and purification. Replacing the second non-bridging oxygen with sulfur results in phosphorodithioate (PS2) linkages, thereby removing the stereocenter. We describe synthesis and analytical data for N-acetylgalactosamine (GalNAc)-conjugated small interfering RNAs (siRNAs) with PS2 in the GalNAc cluster and at the siRNA termini. All siRNA conjugates with PS2 internucleotide linkages were produced with good yield and showed improved analytical properties. PS2 in the GalNAc cluster had no, or only minor, effect on in vitro and in vivo activity. Except for the 5′-antisense position, PS2 modifications were well tolerated at the siRNA termini, and a single PS2 internucleotide linkage gave similar or improved stabilization and in vitro activity as the two PSs typically used for end stabilization. Surprisingly, several of the PS2-containing siRNA conjugates resulted in increased in vivo activity and duration of action compared to the same siRNA sequence stabilized with PS linkages, suggesting PS2 linkages as interesting options for siRNA strand design with a reduced number of undefined stereocenters.
对称之美:siRNA 二硫代磷酸酯修饰可降低立体复杂性,便于分析,并能提高体内效力
硫代磷酸酯(PS)对于稳定治疗性寡核苷酸防止酶降解至关重要。然而,除非使用立体定义的酰胺进行合成,否则每个硫代磷酸酯都会引入一个化学上未定义的立体中心,导致最终产品中出现 2n 个独特的分子,影响下游分析和纯化。用硫取代第二个非桥接氧后,会产生二硫代磷酸酯(PS2)连接,从而消除立体中心。我们描述了在 GalNAc 簇和 siRNA 末端含有 PS2 的 N-乙酰半乳糖胺(GalNAc)共轭小干扰 RNA(siRNA)的合成和分析数据。所有具有 PS2 核苷酸内连接的 siRNA 连接物的产量都很高,分析性能也有所改善。GalNAc 簇中的 PS2 对体外和体内活性没有影响或仅有轻微影响。除 5′-反义位置外,PS2 修饰在 siRNA 端部的耐受性很好,单个 PS2 核苷酸间连接的稳定性和体外活性与通常用于端部稳定的两种 PS 相似或更好。令人惊讶的是,与用 PS 连接稳定的相同 siRNA 序列相比,几种含 PS2 的 siRNA 共轭物的体内活性和作用时间都有所增加,这表明 PS2 连接是设计 siRNA 链的有趣选择,可减少未定义的立体中心的数量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Molecular Therapy. Nucleic Acids
Molecular Therapy. Nucleic Acids MEDICINE, RESEARCH & EXPERIMENTAL-
CiteScore
15.40
自引率
1.10%
发文量
336
审稿时长
20 weeks
期刊介绍: Molecular Therapy Nucleic Acids is an international, open-access journal that publishes high-quality research in nucleic-acid-based therapeutics to treat and correct genetic and acquired diseases. It is the official journal of the American Society of Gene & Cell Therapy and is built upon the success of Molecular Therapy. The journal focuses on gene- and oligonucleotide-based therapies and publishes peer-reviewed research, reviews, and commentaries. Its impact factor for 2022 is 8.8. The subject areas covered include the development of therapeutics based on nucleic acids and their derivatives, vector development for RNA-based therapeutics delivery, utilization of gene-modifying agents like Zn finger nucleases and triplex-forming oligonucleotides, pre-clinical target validation, safety and efficacy studies, and clinical trials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信