Enhanced vibration energy harvesting from coupled pendulums through inertial amplifiers

IF 3.7 3区 材料科学 Q1 INSTRUMENTS & INSTRUMENTATION
R S Kattimani, P V Malaji, S S Chappar and S Adhikari
{"title":"Enhanced vibration energy harvesting from coupled pendulums through inertial amplifiers","authors":"R S Kattimani, P V Malaji, S S Chappar and S Adhikari","doi":"10.1088/1361-665x/ad77ff","DOIUrl":null,"url":null,"abstract":"Achieving higher power output across a broader frequency spectrum presents a significant challenge for vibration energy harvesters aimed at powering low-powered devices from ambient sources. This study introduces the novel concept of employing inertial amplifiers to couple mistuned pendulum electromagnetic harvesters for enhanced energy harvesting performance. A mathematical model elucidating the inertial amplifier mechanism is developed, and analytical results are compared against conventional uncoupled harvesters. Experimental studies demonstrated up to 1.8 times higher power output and a 2-fold increase in operational frequency bandwidth compared to uncoupled harvesters when employing inertial amplifier coupling. The proposed inertially coupled harvester design offers a powerful solution to significantly improve energy transduction levels and extend the viable frequency range, enabling efficient scavenging of ambient vibrations for powering wireless sensors and low-power electronics.","PeriodicalId":21656,"journal":{"name":"Smart Materials and Structures","volume":"15 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Smart Materials and Structures","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1088/1361-665x/ad77ff","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0

Abstract

Achieving higher power output across a broader frequency spectrum presents a significant challenge for vibration energy harvesters aimed at powering low-powered devices from ambient sources. This study introduces the novel concept of employing inertial amplifiers to couple mistuned pendulum electromagnetic harvesters for enhanced energy harvesting performance. A mathematical model elucidating the inertial amplifier mechanism is developed, and analytical results are compared against conventional uncoupled harvesters. Experimental studies demonstrated up to 1.8 times higher power output and a 2-fold increase in operational frequency bandwidth compared to uncoupled harvesters when employing inertial amplifier coupling. The proposed inertially coupled harvester design offers a powerful solution to significantly improve energy transduction levels and extend the viable frequency range, enabling efficient scavenging of ambient vibrations for powering wireless sensors and low-power electronics.
通过惯性放大器加强耦合摆的振动能量采集
要在更宽的频谱范围内实现更高的功率输出,对于旨在从环境源为低功率设备供电的振动能量收集器来说是一项重大挑战。本研究介绍了采用惯性放大器耦合失谐摆式电磁采集器以增强能量采集性能的新概念。研究建立了一个阐明惯性放大器机制的数学模型,并将分析结果与传统的非耦合收割机进行了比较。实验研究表明,当采用惯性放大器耦合时,功率输出比非耦合收割机高出 1.8 倍,工作频率带宽增加了 2 倍。所提出的惯性耦合收割机设计提供了一个强大的解决方案,可显著提高能量传导水平并扩展可行频率范围,从而实现对环境振动的有效清除,为无线传感器和低功耗电子设备供电。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Smart Materials and Structures
Smart Materials and Structures 工程技术-材料科学:综合
CiteScore
7.50
自引率
12.20%
发文量
317
审稿时长
3 months
期刊介绍: Smart Materials and Structures (SMS) is a multi-disciplinary engineering journal that explores the creation and utilization of novel forms of transduction. It is a leading journal in the area of smart materials and structures, publishing the most important results from different regions of the world, largely from Asia, Europe and North America. The results may be as disparate as the development of new materials and active composite systems, derived using theoretical predictions to complex structural systems, which generate new capabilities by incorporating enabling new smart material transducers. The theoretical predictions are usually accompanied with experimental verification, characterizing the performance of new structures and devices. These systems are examined from the nanoscale to the macroscopic. SMS has a Board of Associate Editors who are specialists in a multitude of areas, ensuring that reviews are fast, fair and performed by experts in all sub-disciplines of smart materials, systems and structures. A smart material is defined as any material that is capable of being controlled such that its response and properties change under a stimulus. A smart structure or system is capable of reacting to stimuli or the environment in a prescribed manner. SMS is committed to understanding, expanding and dissemination of knowledge in this subject matter.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信