Numerical simulations of temperature anisotropy instabilities stimulated by suprathermal protons

S. M. Shaaban, R. A. Lopez, M. Lazar, S. Poedts
{"title":"Numerical simulations of temperature anisotropy instabilities stimulated by suprathermal protons","authors":"S. M. Shaaban, R. A. Lopez, M. Lazar, S. Poedts","doi":"arxiv-2409.09180","DOIUrl":null,"url":null,"abstract":"The new in situ measurements of the Solar Orbiter mission contribute to the\nknowledge of the suprathermal populations in the solar wind, especially of ions\nand protons whose characterization, although still in the early phase, seems to\nsuggest a major involvement in the interaction with plasma wave fluctuations.\nRecent studies point to the stimulating effect of suprathermal populations on\ntemperature anisotropy instabilities in the case of electrons already being\ndemonstrated in theory and numerical simulations. Here, we investigate\nanisotropic protons, addressing the electromagnetic ion-cyclotron (EMIC) and\nthe proton firehose (PFH) instabilities. Suprathermal populations enhance the\nhigh-energy tails of the Kappa velocity (or energy) distributions measured in\nsitu, enabling characterization by contrasting to the quasi-thermal population\nin the low-energy (bi-)Maxwellian core. We use hybrid simulations to\ninvestigate the two instabilities (with ions or protons as particles and\nelectrons as fluid) for various configurations relevant to the solar wind and\nterrestrial magnetosphere. The new simulation results confirm the linear theory\nand its predictions. In the presence of suprathermal protons, the wave\nfluctuations reach increased energy density levels for both instabilities and\ncause faster and/or deeper relaxation of temperature anisotropy. The magnitude\nof suprathermal effects also depends on each instability's specific (initial)\nparametric regimes. These results further strengthen the belief that\nwave-particle interactions govern space plasmas. These provide valuable clues\nfor understanding their dynamics, particularly the involvement of suprathermal\nparticles behind the quasi-stationary non-equilibrium states reported by in\nsitu observations.","PeriodicalId":501423,"journal":{"name":"arXiv - PHYS - Space Physics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Space Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.09180","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The new in situ measurements of the Solar Orbiter mission contribute to the knowledge of the suprathermal populations in the solar wind, especially of ions and protons whose characterization, although still in the early phase, seems to suggest a major involvement in the interaction with plasma wave fluctuations. Recent studies point to the stimulating effect of suprathermal populations on temperature anisotropy instabilities in the case of electrons already being demonstrated in theory and numerical simulations. Here, we investigate anisotropic protons, addressing the electromagnetic ion-cyclotron (EMIC) and the proton firehose (PFH) instabilities. Suprathermal populations enhance the high-energy tails of the Kappa velocity (or energy) distributions measured in situ, enabling characterization by contrasting to the quasi-thermal population in the low-energy (bi-)Maxwellian core. We use hybrid simulations to investigate the two instabilities (with ions or protons as particles and electrons as fluid) for various configurations relevant to the solar wind and terrestrial magnetosphere. The new simulation results confirm the linear theory and its predictions. In the presence of suprathermal protons, the wave fluctuations reach increased energy density levels for both instabilities and cause faster and/or deeper relaxation of temperature anisotropy. The magnitude of suprathermal effects also depends on each instability's specific (initial) parametric regimes. These results further strengthen the belief that wave-particle interactions govern space plasmas. These provide valuable clues for understanding their dynamics, particularly the involvement of suprathermal particles behind the quasi-stationary non-equilibrium states reported by in situ observations.
超热质子激发的温度各向异性不稳定性的数值模拟
太阳轨道飞行器任务的新原位测量有助于了解太阳风中的超热粒子群,特别是离子和质子,其特征描述虽然仍处于早期阶段,但似乎表明它们主要参与了与等离子体波波动的相互作用。最近的研究表明,超热粒子群对电子的温度各向异性不稳定性具有刺激作用,这已在理论和数值模拟中得到证实。在这里,我们研究了各向异性质子,探讨了电磁离子-回旋加速器(EMIC)和质子喷火管(PFH)不稳定性。超热质子群增强了现场测量到的 Kappa 速度(或能量)分布的高能量尾部,通过与低能量(双)麦克斯韦内核中的准热质子群进行对比,可以确定其特征。我们使用混合模拟来研究与太阳风和地球磁层有关的各种配置下的两种不稳定性(离子或质子为粒子,电子为流体)。新的模拟结果证实了线性理论及其预测。在存在过热质子的情况下,两种不稳定性的波波动都会达到更高的能量密度水平,并导致更快和/或更深的温度各向异性松弛。超热效应的大小还取决于每种不稳定性的具体(初始)参数状态。这些结果进一步加强了空间等离子体受波-粒子相互作用支配的信念。这为理解它们的动力学提供了宝贵的线索,特别是原位观测所报告的准稳态非平衡态背后超热粒子的参与。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信