{"title":"Unveiling the unseen: novel strategies for object detection beyond known distributions","authors":"S. Devi, R. Dayana, P. Malarvezhi","doi":"10.1007/s10044-024-01334-4","DOIUrl":null,"url":null,"abstract":"<p>In contemporary machine learning, models often struggle with data distribution variations, severely impacting their out-of-distribution (OOD) generalization and detection capabilities. Current object detection methods, relying on virtual outlier synthesis and class-conditional density estimation, struggle to effectively distinguish OOD samples. They often depend on accurate density estimation and may produce virtual outliers that lack realism, particularly in complex or dynamic environments. Furthermore, previous research has typically addressed covariate and semantic shifts independently, resulting in fragmented solutions that fail to comprehensively tackle OOD generalization. This study introduces a unified approach to enhance OOD generalization in object recognition models, addressing these critical gaps. The strategy involves employing adversarial perturbations on the ID (In-Distribution) dataset to enhance the model’s resilience to distribution shifts, thereby simulating potential real-world scenarios characterized by imperceptible variations. Additionally, the integration of Maximum Mean Discrepancy (MMD) at the object level effectively discriminates between ID and OOD samples by quantifying distributional differences. For precise OOD detection, a K-nearest neighbors (KNN) algorithm is used during inference to measure similarity between samples and their closest neighbors in the training data. Evaluations on benchmark datasets, including PASCAL VOC and BDD100K as ID, with COCO and Open Images subsets as OOD, demonstrate significant improvements in OOD generalization compared to existing methods. These discoveries underscore the framework’s potential to elevate the dependability and flexibility of object recognition systems in practical scenarios, particularly in autonomous vehicles where accurate object detection under diverse conditions is critical for safety. This research contributes to advancing OOD generalization techniques and lays the groundwork for future refinement to address evolving challenges in machine learning applications. The code can be accessed from https://github.com/DeviSPhd/<span>\\(OODG\\_OD\\)</span></p>","PeriodicalId":54639,"journal":{"name":"Pattern Analysis and Applications","volume":"94 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pattern Analysis and Applications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10044-024-01334-4","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
In contemporary machine learning, models often struggle with data distribution variations, severely impacting their out-of-distribution (OOD) generalization and detection capabilities. Current object detection methods, relying on virtual outlier synthesis and class-conditional density estimation, struggle to effectively distinguish OOD samples. They often depend on accurate density estimation and may produce virtual outliers that lack realism, particularly in complex or dynamic environments. Furthermore, previous research has typically addressed covariate and semantic shifts independently, resulting in fragmented solutions that fail to comprehensively tackle OOD generalization. This study introduces a unified approach to enhance OOD generalization in object recognition models, addressing these critical gaps. The strategy involves employing adversarial perturbations on the ID (In-Distribution) dataset to enhance the model’s resilience to distribution shifts, thereby simulating potential real-world scenarios characterized by imperceptible variations. Additionally, the integration of Maximum Mean Discrepancy (MMD) at the object level effectively discriminates between ID and OOD samples by quantifying distributional differences. For precise OOD detection, a K-nearest neighbors (KNN) algorithm is used during inference to measure similarity between samples and their closest neighbors in the training data. Evaluations on benchmark datasets, including PASCAL VOC and BDD100K as ID, with COCO and Open Images subsets as OOD, demonstrate significant improvements in OOD generalization compared to existing methods. These discoveries underscore the framework’s potential to elevate the dependability and flexibility of object recognition systems in practical scenarios, particularly in autonomous vehicles where accurate object detection under diverse conditions is critical for safety. This research contributes to advancing OOD generalization techniques and lays the groundwork for future refinement to address evolving challenges in machine learning applications. The code can be accessed from https://github.com/DeviSPhd/\(OODG\_OD\)
期刊介绍:
The journal publishes high quality articles in areas of fundamental research in intelligent pattern analysis and applications in computer science and engineering. It aims to provide a forum for original research which describes novel pattern analysis techniques and industrial applications of the current technology. In addition, the journal will also publish articles on pattern analysis applications in medical imaging. The journal solicits articles that detail new technology and methods for pattern recognition and analysis in applied domains including, but not limited to, computer vision and image processing, speech analysis, robotics, multimedia, document analysis, character recognition, knowledge engineering for pattern recognition, fractal analysis, and intelligent control. The journal publishes articles on the use of advanced pattern recognition and analysis methods including statistical techniques, neural networks, genetic algorithms, fuzzy pattern recognition, machine learning, and hardware implementations which are either relevant to the development of pattern analysis as a research area or detail novel pattern analysis applications. Papers proposing new classifier systems or their development, pattern analysis systems for real-time applications, fuzzy and temporal pattern recognition and uncertainty management in applied pattern recognition are particularly solicited.