{"title":"Synthesis of Nanoscale ZSM-5 Zeolites for the Catalytic Cracking of Oleic Acid into Light Olefins and Aromatics","authors":"Hao Liu, Yanlin Wang, Hong Yuan, Wenbo Luo","doi":"10.1007/s10904-024-03404-w","DOIUrl":null,"url":null,"abstract":"<p>Nanoscale ZSM-5 zeolites (NZSM-5) having different crystal sizes and Si/tetrapropylammonium hydroxide (TPAOH) molar ratios were synthesized using a hydrothermal method. These materials were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and N<sub>2</sub> adsorption–desorption. The results showed that each zeolite was highly crystalline regardless of the Si/TPAOH ratio and that the Brunauer–Emmett–Teller surface areas were in the range of 329−392 m<sup>2</sup>/g. The random aggregation of these nanoparticles resulted in the formation of numerous intergranular mesopores. These NZSM-5 zeolites were applied to the catalytic cracking of oleic acid to prepare light olefins and light aromatics using a laboratory-scale fixed bed reactor. The zeolite having a Si/TPAOH ratio of 10/5 showed the best catalytic activity and provided light olefins yield of 55% and selectivity of BTX in liquid phase products of 18%, respectively, at 500 °C. The small crystal size and abundant intergranular mesopores in this specimen resulted in shorter diffusion paths and an increase in the external specific surface area that both inhibited coke deposition and ensured accessible acid sites.</p><h3 data-test=\"abstract-sub-heading\">Graphical Abstract</h3>\n","PeriodicalId":639,"journal":{"name":"Journal of Inorganic and Organometallic Polymers and Materials","volume":null,"pages":null},"PeriodicalIF":3.9000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Inorganic and Organometallic Polymers and Materials","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s10904-024-03404-w","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Nanoscale ZSM-5 zeolites (NZSM-5) having different crystal sizes and Si/tetrapropylammonium hydroxide (TPAOH) molar ratios were synthesized using a hydrothermal method. These materials were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and N2 adsorption–desorption. The results showed that each zeolite was highly crystalline regardless of the Si/TPAOH ratio and that the Brunauer–Emmett–Teller surface areas were in the range of 329−392 m2/g. The random aggregation of these nanoparticles resulted in the formation of numerous intergranular mesopores. These NZSM-5 zeolites were applied to the catalytic cracking of oleic acid to prepare light olefins and light aromatics using a laboratory-scale fixed bed reactor. The zeolite having a Si/TPAOH ratio of 10/5 showed the best catalytic activity and provided light olefins yield of 55% and selectivity of BTX in liquid phase products of 18%, respectively, at 500 °C. The small crystal size and abundant intergranular mesopores in this specimen resulted in shorter diffusion paths and an increase in the external specific surface area that both inhibited coke deposition and ensured accessible acid sites.
期刊介绍:
Journal of Inorganic and Organometallic Polymers and Materials [JIOP or JIOPM] is a comprehensive resource for reports on the latest theoretical and experimental research. This bimonthly journal encompasses a broad range of synthetic and natural substances which contain main group, transition, and inner transition elements. The publication includes fully peer-reviewed original papers and shorter communications, as well as topical review papers that address the synthesis, characterization, evaluation, and phenomena of inorganic and organometallic polymers, materials, and supramolecular systems.