Sarah E Robinson,Andrew R Findlay,Shan Li,Feng Wang,Marianela Schiava,Jil Daw,Jordi Diaz-Manera,Tsui-Fen Chou,Conrad C Weihl
{"title":"Elevated VCP ATPase Activity Correlates With Disease Onset in Multisystem Proteinopathy-1.","authors":"Sarah E Robinson,Andrew R Findlay,Shan Li,Feng Wang,Marianela Schiava,Jil Daw,Jordi Diaz-Manera,Tsui-Fen Chou,Conrad C Weihl","doi":"10.1212/nxg.0000000000200191","DOIUrl":null,"url":null,"abstract":"Objectives\r\nMultisystem proteinopathy-1 (MSP1) is a late onset disease with >50 pathogenic variants in p97/VCP. MSP1 patients have multiple phenotypes that include inclusion body myopathy, Paget disease of the bone, amyotrophic lateral sclerosis, and frontotemporal dementia. There have been no clear genotype-phenotype correlations. We sought to identify genotype-phenotype correlations and associate these with VCP intrinsic ATPase activity.\r\n\r\nMethods\r\nPatients with MSP1 were identified from the literature and the Cure VCP patient registry. Age at onset and at loss of ambulation were collated. VCP intrinsic ATPase activity was evaluated from recombinant purified protein.\r\n\r\nResults\r\nAmong the 5 most common pathogenic VCP variants in MSP1 patients, R155C patients had the earliest average age at onset (38.15 ± 9.78). This correlated with higher ATPase activity. Evaluation of 5 variants confirmed an inverse correlation between age at onset and ATPase activity (r = -0.94, p = 0.01).\r\n\r\nDiscussion\r\nPrevious studies have reported that VCP pathogenic variants are \"hyperactive.\" Whether this elevation in VCP ATPase activity is relevant to disease is unclear. Our study supports that in vitro VCP activity correlates with disease onset and may guide the prognosis of patients with rare or unreported variants. Moreover, it suggests that inhibition of VCP ATPase activity in MSP1 may be therapeutic.","PeriodicalId":48613,"journal":{"name":"Neurology-Genetics","volume":"10 1","pages":"e200191"},"PeriodicalIF":3.0000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurology-Genetics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1212/nxg.0000000000200191","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Objectives
Multisystem proteinopathy-1 (MSP1) is a late onset disease with >50 pathogenic variants in p97/VCP. MSP1 patients have multiple phenotypes that include inclusion body myopathy, Paget disease of the bone, amyotrophic lateral sclerosis, and frontotemporal dementia. There have been no clear genotype-phenotype correlations. We sought to identify genotype-phenotype correlations and associate these with VCP intrinsic ATPase activity.
Methods
Patients with MSP1 were identified from the literature and the Cure VCP patient registry. Age at onset and at loss of ambulation were collated. VCP intrinsic ATPase activity was evaluated from recombinant purified protein.
Results
Among the 5 most common pathogenic VCP variants in MSP1 patients, R155C patients had the earliest average age at onset (38.15 ± 9.78). This correlated with higher ATPase activity. Evaluation of 5 variants confirmed an inverse correlation between age at onset and ATPase activity (r = -0.94, p = 0.01).
Discussion
Previous studies have reported that VCP pathogenic variants are "hyperactive." Whether this elevation in VCP ATPase activity is relevant to disease is unclear. Our study supports that in vitro VCP activity correlates with disease onset and may guide the prognosis of patients with rare or unreported variants. Moreover, it suggests that inhibition of VCP ATPase activity in MSP1 may be therapeutic.
期刊介绍:
Neurology: Genetics is an online open access journal publishing peer-reviewed reports in the field of neurogenetics. Original articles in all areas of neurogenetics will be published including rare and common genetic variation, genotype-phenotype correlations, outlier phenotypes as a result of mutations in known disease-genes, and genetic variations with a putative link to diseases. This will include studies reporting on genetic disease risk and pharmacogenomics. In addition, Neurology: Genetics will publish results of gene-based clinical trials (viral, ASO, etc.). Genetically engineered model systems are not a primary focus of Neurology: Genetics, but studies using model systems for treatment trials are welcome, including well-powered studies reporting negative results.