Constructing weakly solvating electrolytes for next-generation Zn-ion batteries

IF 32.4 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Diyu Xu, Dezhou Zheng, Fuxin Wang, Xuefeng Shang, Yi Wang and Xihong Lu
{"title":"Constructing weakly solvating electrolytes for next-generation Zn-ion batteries","authors":"Diyu Xu, Dezhou Zheng, Fuxin Wang, Xuefeng Shang, Yi Wang and Xihong Lu","doi":"10.1039/D4EE03209H","DOIUrl":null,"url":null,"abstract":"<p >Zn-ion batteries (ZIBs) are considered as a viable candidate for grid-scale energy storage with admirable capacity, high safety and low cost, but are severely hampered by the undesirable dendrite growth and parasitic reactions at the Zn anode side. The compositions of the electrolytes are critical to the performance enhancement of ZIBs. Conventional electrolytes are unable to meet the ever-growing requirements for fast-charging and wide-temperature operation of ZIBs. Despite the great achievements of (localized) highly concentrated electrolytes and low concentrated electrolytes with high donor number additives, they still face challenges of low ionic conductivity, high cost and sluggish de-solvation kinetics of Zn<small><sup>2+</sup></small>. Therefore, weakly solvating electrolytes (WSEs) are proposed to improve the aforementioned shortcomings, which have attracted intensive research enthusiasm in recent years. This review analyzes the functions, design criteria, and recent progress of WSEs and then a vision on future directions in this field is also presented. The insights will benefit the development of next-generation high-performance ZIBs.</p>","PeriodicalId":72,"journal":{"name":"Energy & Environmental Science","volume":" 21","pages":" 8094-8101"},"PeriodicalIF":32.4000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy & Environmental Science","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/ee/d4ee03209h","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Zn-ion batteries (ZIBs) are considered as a viable candidate for grid-scale energy storage with admirable capacity, high safety and low cost, but are severely hampered by the undesirable dendrite growth and parasitic reactions at the Zn anode side. The compositions of the electrolytes are critical to the performance enhancement of ZIBs. Conventional electrolytes are unable to meet the ever-growing requirements for fast-charging and wide-temperature operation of ZIBs. Despite the great achievements of (localized) highly concentrated electrolytes and low concentrated electrolytes with high donor number additives, they still face challenges of low ionic conductivity, high cost and sluggish de-solvation kinetics of Zn2+. Therefore, weakly solvating electrolytes (WSEs) are proposed to improve the aforementioned shortcomings, which have attracted intensive research enthusiasm in recent years. This review analyzes the functions, design criteria, and recent progress of WSEs and then a vision on future directions in this field is also presented. The insights will benefit the development of next-generation high-performance ZIBs.

Abstract Image

为下一代锌离子电池构建弱溶解电解质
锌离子电池(ZIBs)具有容量大、安全性高和成本低等优点,被认为是电网规模储能的可行候选方案,但由于在锌阳极侧存在不良的枝晶生长和寄生反应,因此受到严重阻碍。电解质的成分对提高 ZIB 的性能至关重要。传统电解质无法满足 ZIB 对快速充电和宽温工作日益增长的要求。尽管(局部)高浓度电解质和含有高供体数添加剂的低浓度电解质取得了巨大成就,但它们仍然面临着离子电导率低、成本高和 Zn2+ 脱溶动力学缓慢等挑战。因此,弱溶解电解质(WSEs)被提出来改善上述缺点,近年来引起了广泛的研究热情。本综述分析了弱溶解电解质的功能、设计标准和最新进展,并展望了该领域的未来发展方向。这些见解将有助于下一代高性能 ZIB 的开发。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Energy & Environmental Science
Energy & Environmental Science 化学-工程:化工
CiteScore
50.50
自引率
2.20%
发文量
349
审稿时长
2.2 months
期刊介绍: Energy & Environmental Science, a peer-reviewed scientific journal, publishes original research and review articles covering interdisciplinary topics in the (bio)chemical and (bio)physical sciences, as well as chemical engineering disciplines. Published monthly by the Royal Society of Chemistry (RSC), a not-for-profit publisher, Energy & Environmental Science is recognized as a leading journal. It boasts an impressive impact factor of 8.500 as of 2009, ranking 8th among 140 journals in the category "Chemistry, Multidisciplinary," second among 71 journals in "Energy & Fuels," second among 128 journals in "Engineering, Chemical," and first among 181 scientific journals in "Environmental Sciences." Energy & Environmental Science publishes various types of articles, including Research Papers (original scientific work), Review Articles, Perspectives, and Minireviews (feature review-type articles of broad interest), Communications (original scientific work of an urgent nature), Opinions (personal, often speculative viewpoints or hypotheses on current topics), and Analysis Articles (in-depth examination of energy-related issues).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信