Niccolò Menegoni, Ludovico Manna, Matteo Maino, Cesare Perotti
{"title":"Finite element analysis of early deformations of carbonate platforms driven by differential compaction of basinal unit","authors":"Niccolò Menegoni, Ludovico Manna, Matteo Maino, Cesare Perotti","doi":"10.1111/bre.12903","DOIUrl":null,"url":null,"abstract":"<p>A two-dimensional numerical analysis based on the finite element method and linear elasticity is used to demonstrate how the differential compaction of the basinal unit can cause the early deformation of a prograding and/or aggrading carbonate platform. Our model investigates the modification of the carbonate platform stratal architecture and stress field driven by the process of differential compaction. We compared the results of our model with observations from two Triassic carbonate platforms in the Italian Dolomites: Lastoni di Formin and Nuvolau Mts. (Passo Giau, Italy). We show that the model can explain the modification of stratal architecture, as well as fault and fracture patterns observed on these platforms. In particular, we show that (1) the slope and slope-to-basin transition regions are expected to experience most of the brittle deformation and, differently from what was suggested by previous numerical studies, the formation of platform-ward dipping faults and major fractures with dip angles that tend to decrease moving dip-ward. In addition, (2) the inner platform region can exhibit a slightly tensile regime, which may lead to the formation of syndepositional and/or syndiagenetic fractures. Moreover, (3) in the case of predominantly prograding platforms, the results of the model show a general tilting and thickening of the inner platform strata towards the shelf-slope break.</p>","PeriodicalId":8712,"journal":{"name":"Basin Research","volume":"36 5","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/bre.12903","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Basin Research","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/bre.12903","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
A two-dimensional numerical analysis based on the finite element method and linear elasticity is used to demonstrate how the differential compaction of the basinal unit can cause the early deformation of a prograding and/or aggrading carbonate platform. Our model investigates the modification of the carbonate platform stratal architecture and stress field driven by the process of differential compaction. We compared the results of our model with observations from two Triassic carbonate platforms in the Italian Dolomites: Lastoni di Formin and Nuvolau Mts. (Passo Giau, Italy). We show that the model can explain the modification of stratal architecture, as well as fault and fracture patterns observed on these platforms. In particular, we show that (1) the slope and slope-to-basin transition regions are expected to experience most of the brittle deformation and, differently from what was suggested by previous numerical studies, the formation of platform-ward dipping faults and major fractures with dip angles that tend to decrease moving dip-ward. In addition, (2) the inner platform region can exhibit a slightly tensile regime, which may lead to the formation of syndepositional and/or syndiagenetic fractures. Moreover, (3) in the case of predominantly prograding platforms, the results of the model show a general tilting and thickening of the inner platform strata towards the shelf-slope break.
期刊介绍:
Basin Research is an international journal which aims to publish original, high impact research papers on sedimentary basin systems. We view integrated, interdisciplinary research as being essential for the advancement of the subject area; therefore, we do not seek manuscripts focused purely on sedimentology, structural geology, or geophysics that have a natural home in specialist journals. Rather, we seek manuscripts that treat sedimentary basins as multi-component systems that require a multi-faceted approach to advance our understanding of their development. During deposition and subsidence we are concerned with large-scale geodynamic processes, heat flow, fluid flow, strain distribution, seismic and sequence stratigraphy, modelling, burial and inversion histories. In addition, we view the development of the source area, in terms of drainage networks, climate, erosion, denudation and sediment routing systems as vital to sedimentary basin systems. The underpinning requirement is that a contribution should be of interest to earth scientists of more than one discipline.