Enhancing soil profile analysis with soil spectral libraries and laboratory hyperspectral imaging

IF 5.6 1区 农林科学 Q1 SOIL SCIENCE
Yuwei Zhou , Asim Biswas , Yongsheng Hong , Songchao Chen , Bifeng Hu , Zhou Shi , Yan Guo , Shuo Li
{"title":"Enhancing soil profile analysis with soil spectral libraries and laboratory hyperspectral imaging","authors":"Yuwei Zhou ,&nbsp;Asim Biswas ,&nbsp;Yongsheng Hong ,&nbsp;Songchao Chen ,&nbsp;Bifeng Hu ,&nbsp;Zhou Shi ,&nbsp;Yan Guo ,&nbsp;Shuo Li","doi":"10.1016/j.geoderma.2024.117036","DOIUrl":null,"url":null,"abstract":"<div><p>Soil visible-near-infrared (vis–NIR) spectroscopy offers a rapid, uncontaminated, and cost-efficient method for estimating physicochemical properties such as soil organic carbon (SOC). The development of soil spectral libraries (SSLs) and localized modeling methods has significantly improved the selection of appropriate modeling sets from SSLs for soil analysis. Nevertheless, most studies assume that the SSLs sufficiently cover the target samples for prediction. This study challenges this assumption by investigating the feasibility of using an SSL to predict SOC accurately in a local area when the dataset to be predicted (156,800 samples) vastly exceeds the SSL capacity (3755 samples). We utilized 1-meter-deep whole-soil profile and employed spectral similarity and continuum-removal (SS-CR) calculation to construct a Local dataset from the SSL, with a Global subset serving as a baseline for comparison. The effectiveness of partial least-squares regression (PLSR) and random forest (RF) algorithms in establishing quantitative relationships between spectra and SOC content was evaluated. Our results demonstrated that the Local model, with significantly fewer samples (1116), achieved higher predictive accuracy than the Global model. Both Global (<em>R</em><sup>2</sup> = 0.80, RMSE = 0.74 %) and Local (<em>R</em><sup>2</sup> = 0.83, RMSE = 0.75 %) models, developed using the RF algorithm, not only exhibited excellent accuracy but also enabled detailed and cost-effective characterization of the spatial distribution of SOC. Thus, leveraging SSLs enhances the cost-efficiency and predictive capacity of vis–NIR spectral analysis, particularly in handling large datasets at a local scale, underscoring the value of localized approaches in soil spectroscopy.</p></div>","PeriodicalId":12511,"journal":{"name":"Geoderma","volume":"450 ","pages":"Article 117036"},"PeriodicalIF":5.6000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0016706124002659/pdfft?md5=8aef4a7cb69f6bc19721dda5699a03a6&pid=1-s2.0-S0016706124002659-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geoderma","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0016706124002659","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SOIL SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Soil visible-near-infrared (vis–NIR) spectroscopy offers a rapid, uncontaminated, and cost-efficient method for estimating physicochemical properties such as soil organic carbon (SOC). The development of soil spectral libraries (SSLs) and localized modeling methods has significantly improved the selection of appropriate modeling sets from SSLs for soil analysis. Nevertheless, most studies assume that the SSLs sufficiently cover the target samples for prediction. This study challenges this assumption by investigating the feasibility of using an SSL to predict SOC accurately in a local area when the dataset to be predicted (156,800 samples) vastly exceeds the SSL capacity (3755 samples). We utilized 1-meter-deep whole-soil profile and employed spectral similarity and continuum-removal (SS-CR) calculation to construct a Local dataset from the SSL, with a Global subset serving as a baseline for comparison. The effectiveness of partial least-squares regression (PLSR) and random forest (RF) algorithms in establishing quantitative relationships between spectra and SOC content was evaluated. Our results demonstrated that the Local model, with significantly fewer samples (1116), achieved higher predictive accuracy than the Global model. Both Global (R2 = 0.80, RMSE = 0.74 %) and Local (R2 = 0.83, RMSE = 0.75 %) models, developed using the RF algorithm, not only exhibited excellent accuracy but also enabled detailed and cost-effective characterization of the spatial distribution of SOC. Thus, leveraging SSLs enhances the cost-efficiency and predictive capacity of vis–NIR spectral analysis, particularly in handling large datasets at a local scale, underscoring the value of localized approaches in soil spectroscopy.

利用土壤光谱库和实验室高光谱成像加强土壤剖面分析
土壤可见光-近红外(vis-NIR)光谱法为估算土壤有机碳(SOC)等理化性质提供了一种快速、无污染且经济高效的方法。土壤光谱库(SSL)和局部建模方法的发展极大地改进了从 SSL 中选择适当建模集进行土壤分析的工作。然而,大多数研究都假设 SSL 足以覆盖预测的目标样本。本研究挑战了这一假设,研究了当需要预测的数据集(156800 个样本)大大超过 SSL 的容量(3755 个样本)时,使用 SSL 在局部地区准确预测 SOC 的可行性。我们利用 1 米深的全土壤剖面,采用光谱相似性和连续去除(SS-CR)计算方法,从 SSL 中构建了本地数据集,并将全球子集作为比较基线。评估了偏最小二乘回归(PLSR)和随机森林(RF)算法在建立光谱与 SOC 含量之间的定量关系方面的有效性。结果表明,样本数量明显较少(1116 个)的本地模型的预测准确率高于全球模型。使用射频算法开发的全局模型(R2 = 0.80,RMSE = 0.74 %)和局部模型(R2 = 0.83,RMSE = 0.75 %)不仅具有极高的准确性,还能对 SOC 的空间分布进行详细而经济高效的描述。因此,利用 SSL 提高了可见近红外光谱分析的成本效益和预测能力,特别是在处理局部尺度的大型数据集时,突出了局部方法在土壤光谱学中的价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Geoderma
Geoderma 农林科学-土壤科学
CiteScore
11.80
自引率
6.60%
发文量
597
审稿时长
58 days
期刊介绍: Geoderma - the global journal of soil science - welcomes authors, readers and soil research from all parts of the world, encourages worldwide soil studies, and embraces all aspects of soil science and its associated pedagogy. The journal particularly welcomes interdisciplinary work focusing on dynamic soil processes and functions across space and time.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信