{"title":"A molecular module with PheIAA17 as the core significantly promotes lateral root germination","authors":"Junlei Xu, Miaomiao Cai, Yali Xie, Zhanchao Cheng, Chongyang Wu, Jian Gao","doi":"10.1016/j.hpj.2023.11.008","DOIUrl":null,"url":null,"abstract":"Monocot root systems comprise a large number of lateral roots to allow them to survive and colonize land. Auxin signaling pathways centered on Aux/IAA play a crucial role in lateral root development. However, in non-model monocot plants, the effects of Aux/IAA on lateral root initiation and number remain largely unknown. The present study transformed <ce:italic>PheIAA17</ce:italic>, a member of the Aux/IAA family of Moso bamboo, into rice and found that it significantly drove plants to produce lateral roots and improved the rooting rate. Quantitative experiments showed that <ce:italic>PheIAA17</ce:italic> overexpression significantly affected the expression of ARF family members. Phylogenetic and promoter analyses indicate that PheARF3-2 belongs to class B ARF, and the promoter region contains auxin response elements. The results of yeast one-hybrid and dual-luciferase reporter assays confirmed that PheIAA17 bound specific fragments of the <ce:italic>PheARF3-2</ce:italic> promoter to repress its transcriptional activity. Y2H and BiFC assay have shown that PheIAA17 and PheIAA30-3 could physically interact in vitro and in vivo. Taken together, this study reports a new molecular module centered on <ce:italic>PheIAA17</ce:italic>, which directs plants to alter root morphology through an increase in lateral roots.","PeriodicalId":13178,"journal":{"name":"Horticultural Plant Journal","volume":"93 1","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Horticultural Plant Journal","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1016/j.hpj.2023.11.008","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HORTICULTURE","Score":null,"Total":0}
引用次数: 0
Abstract
Monocot root systems comprise a large number of lateral roots to allow them to survive and colonize land. Auxin signaling pathways centered on Aux/IAA play a crucial role in lateral root development. However, in non-model monocot plants, the effects of Aux/IAA on lateral root initiation and number remain largely unknown. The present study transformed PheIAA17, a member of the Aux/IAA family of Moso bamboo, into rice and found that it significantly drove plants to produce lateral roots and improved the rooting rate. Quantitative experiments showed that PheIAA17 overexpression significantly affected the expression of ARF family members. Phylogenetic and promoter analyses indicate that PheARF3-2 belongs to class B ARF, and the promoter region contains auxin response elements. The results of yeast one-hybrid and dual-luciferase reporter assays confirmed that PheIAA17 bound specific fragments of the PheARF3-2 promoter to repress its transcriptional activity. Y2H and BiFC assay have shown that PheIAA17 and PheIAA30-3 could physically interact in vitro and in vivo. Taken together, this study reports a new molecular module centered on PheIAA17, which directs plants to alter root morphology through an increase in lateral roots.
期刊介绍:
Horticultural Plant Journal (HPJ) is an OPEN ACCESS international journal. HPJ publishes research related to all horticultural plants, including fruits, vegetables, ornamental plants, tea plants, and medicinal plants, etc. The journal covers all aspects of horticultural crop sciences, including germplasm resources, genetics and breeding, tillage and cultivation, physiology and biochemistry, ecology, genomics, biotechnology, plant protection, postharvest processing, etc. Article types include Original research papers, Reviews, and Short communications.