Analytical estimate of effective charge and ground-state energies of two to five electron sequences up to atomic number 20 utilizing the variational method
Kousar Shaheen, Roohi Zafar, Saba Javaid, Ahmed Ali Rajput
{"title":"Analytical estimate of effective charge and ground-state energies of two to five electron sequences up to atomic number 20 utilizing the variational method","authors":"Kousar Shaheen, Roohi Zafar, Saba Javaid, Ahmed Ali Rajput","doi":"10.1186/s43088-024-00551-4","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>The variational method, a quantum mechanical approach, estimates effective charge distributions and ground-state energy by minimizing the Hamiltonian's expectation value using trial wave functions with adjustable parameters. This method provides valuable insights into system behavior and is widely used in theoretical chemistry and physics. This paper aims to investigate ground-state energies and isoelectronic sequences using the variational method, introducing a novel approach for analyzing multi-electron systems. This technique allows for determining effective charge values and ground-state energies for 2–5 electrons sequence up to Z ≤ 20. Hydrogenic wave functions are used as a trial wave function to calculate effective charge in 1 s, 2 s, and 2p states. Two varying parameters were used to calculate an approximate wave function for the system. These values are then used in non-relativistic Hamiltonian with electron–electron interaction terms to calculate the ground-state energy of an atom.</p><h3>Result</h3><p>The results align with the reported experimental values, showing a marginal 1% error.</p><h3>Conclusion</h3><p>A Python algorithm is established based on the variational principle. It was found that, based on a few selected parameters in scripting the program, a very promising result was obtained. Furthermore, adding more variational parameters can minimize the difference between experimental and theoretical values, and this technique can be extended to elements with higher atomic numbers.</p></div>","PeriodicalId":481,"journal":{"name":"Beni-Suef University Journal of Basic and Applied Sciences","volume":"13 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://bjbas.springeropen.com/counter/pdf/10.1186/s43088-024-00551-4","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Beni-Suef University Journal of Basic and Applied Sciences","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1186/s43088-024-00551-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Background
The variational method, a quantum mechanical approach, estimates effective charge distributions and ground-state energy by minimizing the Hamiltonian's expectation value using trial wave functions with adjustable parameters. This method provides valuable insights into system behavior and is widely used in theoretical chemistry and physics. This paper aims to investigate ground-state energies and isoelectronic sequences using the variational method, introducing a novel approach for analyzing multi-electron systems. This technique allows for determining effective charge values and ground-state energies for 2–5 electrons sequence up to Z ≤ 20. Hydrogenic wave functions are used as a trial wave function to calculate effective charge in 1 s, 2 s, and 2p states. Two varying parameters were used to calculate an approximate wave function for the system. These values are then used in non-relativistic Hamiltonian with electron–electron interaction terms to calculate the ground-state energy of an atom.
Result
The results align with the reported experimental values, showing a marginal 1% error.
Conclusion
A Python algorithm is established based on the variational principle. It was found that, based on a few selected parameters in scripting the program, a very promising result was obtained. Furthermore, adding more variational parameters can minimize the difference between experimental and theoretical values, and this technique can be extended to elements with higher atomic numbers.
期刊介绍:
Beni-Suef University Journal of Basic and Applied Sciences (BJBAS) is a peer-reviewed, open-access journal. This journal welcomes submissions of original research, literature reviews, and editorials in its respected fields of fundamental science, applied science (with a particular focus on the fields of applied nanotechnology and biotechnology), medical sciences, pharmaceutical sciences, and engineering. The multidisciplinary aspects of the journal encourage global collaboration between researchers in multiple fields and provide cross-disciplinary dissemination of findings.