Xindi Yao, Peng Lian, Jinping Chen, Yi Zeng, Tianjun Yu, Shuangqing Wang, Xudong Guo, Rui Hu, Peng Tian, Michaela Vockenhuber, Dimitrios Kazazis, Yasin Ekinci, Guoqiang Yang and Yi Li
{"title":"Iodonium functionalized polystyrene as non-chemically amplified resists for electron beam and extreme ultraviolet lithography†","authors":"Xindi Yao, Peng Lian, Jinping Chen, Yi Zeng, Tianjun Yu, Shuangqing Wang, Xudong Guo, Rui Hu, Peng Tian, Michaela Vockenhuber, Dimitrios Kazazis, Yasin Ekinci, Guoqiang Yang and Yi Li","doi":"10.1039/D4LP00136B","DOIUrl":null,"url":null,"abstract":"<p >A novel non-chemically amplified resist (n-CAR) based on biphenyl iodonium perfluoro-1-butanesulfonate-modified polystyrene with a naphthalimide scaffold (PSNA<small><sub>0.4</sub></small>) was synthesized and characterized. Through extensive exploration using dose-dependent resist thickness analysis, acetonitrile was identified as the optimal developer. Employing electron beam lithography (EBL), the n-CAR of PSNA<small><sub>0.4</sub></small> demonstrated its high-resolution patterning capability by resolving a dense line pattern of 18 nm L/S at an exposure dose of 1300 μC cm<small><sup>−2</sup></small>, achieving a high contrast of 7.1. Further studies using extreme ultraviolet lithography (EUVL) demonstrated that the PSNA<small><sub>0.4</sub></small> resist can achieve 22 nm L/S patterns at a dose of 90.8 mJ cm<small><sup>−2</sup></small>, underscoring its high sensitivity for n-CARs. Detailed studies to gain insights into the underlying patterning mechanisms using X-ray photoelectron spectroscopy (XPS) suggest that the cleavage of polar iodonium into nonpolar polystyrene (PS)-based iodobenzene species enables a solubility switch, resulting in negative lithographic patterns. These findings highlight the innovative potential of the PSNA<small><sub>0.4</sub></small> resist in advancing the capabilities of n-CAR technologies, particularly in the realms of EBL and EUVL, for high-resolution lithographic applications.</p>","PeriodicalId":101139,"journal":{"name":"RSC Applied Polymers","volume":" 5","pages":" 870-879"},"PeriodicalIF":0.0000,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/lp/d4lp00136b?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"RSC Applied Polymers","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/lp/d4lp00136b","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
A novel non-chemically amplified resist (n-CAR) based on biphenyl iodonium perfluoro-1-butanesulfonate-modified polystyrene with a naphthalimide scaffold (PSNA0.4) was synthesized and characterized. Through extensive exploration using dose-dependent resist thickness analysis, acetonitrile was identified as the optimal developer. Employing electron beam lithography (EBL), the n-CAR of PSNA0.4 demonstrated its high-resolution patterning capability by resolving a dense line pattern of 18 nm L/S at an exposure dose of 1300 μC cm−2, achieving a high contrast of 7.1. Further studies using extreme ultraviolet lithography (EUVL) demonstrated that the PSNA0.4 resist can achieve 22 nm L/S patterns at a dose of 90.8 mJ cm−2, underscoring its high sensitivity for n-CARs. Detailed studies to gain insights into the underlying patterning mechanisms using X-ray photoelectron spectroscopy (XPS) suggest that the cleavage of polar iodonium into nonpolar polystyrene (PS)-based iodobenzene species enables a solubility switch, resulting in negative lithographic patterns. These findings highlight the innovative potential of the PSNA0.4 resist in advancing the capabilities of n-CAR technologies, particularly in the realms of EBL and EUVL, for high-resolution lithographic applications.