A Customized Strategy Realizes Stable Cycle of Large-Capacity and High-Voltage Layered Cathode for Sodium-Ion Batteries

IF 16.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Bo Peng, Zihao Zhou, Ji Shi, Sheng Xu, Jie Yang, Chengrong Xu, Daxian Zuo, Jie Xu, Lianbo Ma, Shaohua Guo, Haoshen Zhou
{"title":"A Customized Strategy Realizes Stable Cycle of Large-Capacity and High-Voltage Layered Cathode for Sodium-Ion Batteries","authors":"Bo Peng, Zihao Zhou, Ji Shi, Sheng Xu, Jie Yang, Chengrong Xu, Daxian Zuo, Jie Xu, Lianbo Ma, Shaohua Guo, Haoshen Zhou","doi":"10.1002/anie.202411618","DOIUrl":null,"url":null,"abstract":"High-voltage P2-Na0.67Ni0.33Mn0.67O2 layered oxide cathode exhibits significant potential for sodium-ion batteries, owing to the elevated operating voltage and theoretical energy density beyond lithium iron phosphate, but the large-volume phase transition is the devil. Currently, this type cathode still suffers from stability–capacity trade-off dilemma. Herein, a concept of customized strategy via multiple rock-forming elements trace doping is presented to address the mentioned issue. The customized Mg-Al-Ti trace doped cathode maintains a notable capacity of 140.3 mAh g − 1 with an energy density approaching 500 Wh kg − 1, and shows good cycle stability, retaining 89.0% of its capacity after 50 cycles at 0.1C. Additionally, the full cell, paired with a hard carbon anode, achieves an advanced energy density of 303.3 Wh kg−1. The multiple characterizations reveal the failure mechanism of contrast sample involving severe intragranular cracks coupled with layer to rock salt transformation, which reduces active substance and increases charge transfer resistance. The doped sample with increased sliding energy barrier well suppresses this phenomenon. Impressively, the customized strategy can be extended to Mg-Fe-Ti system. This research provides a novel concept for the design of high energy sodium-ion cathode.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":null,"pages":null},"PeriodicalIF":16.1000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202411618","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

High-voltage P2-Na0.67Ni0.33Mn0.67O2 layered oxide cathode exhibits significant potential for sodium-ion batteries, owing to the elevated operating voltage and theoretical energy density beyond lithium iron phosphate, but the large-volume phase transition is the devil. Currently, this type cathode still suffers from stability–capacity trade-off dilemma. Herein, a concept of customized strategy via multiple rock-forming elements trace doping is presented to address the mentioned issue. The customized Mg-Al-Ti trace doped cathode maintains a notable capacity of 140.3 mAh g − 1 with an energy density approaching 500 Wh kg − 1, and shows good cycle stability, retaining 89.0% of its capacity after 50 cycles at 0.1C. Additionally, the full cell, paired with a hard carbon anode, achieves an advanced energy density of 303.3 Wh kg−1. The multiple characterizations reveal the failure mechanism of contrast sample involving severe intragranular cracks coupled with layer to rock salt transformation, which reduces active substance and increases charge transfer resistance. The doped sample with increased sliding energy barrier well suppresses this phenomenon. Impressively, the customized strategy can be extended to Mg-Fe-Ti system. This research provides a novel concept for the design of high energy sodium-ion cathode.
定制战略实现了钠离子电池大容量高电压层状阴极的稳定循环
高电压 P2-Na0.67Ni0.33Mn0.67O2 层状氧化物正极在钠离子电池中具有巨大潜力,因为其工作电压和理论能量密度均高于磷酸铁锂,但大体积相变是其致命弱点。目前,这种正极仍然存在稳定性和容量权衡的困境。为解决上述问题,本文提出了一种通过多种成岩元素微量掺杂的定制策略概念。定制的掺杂镁-铝-钛微量元素阴极可保持 140.3 mAh g - 1 的显著容量,能量密度接近 500 Wh kg - 1,并显示出良好的循环稳定性,在 0.1C 下循环 50 次后仍能保持 89.0% 的容量。此外,与硬碳阳极配对的全电池还实现了 303.3 Wh kg-1 的先进能量密度。多重表征揭示了对比样品的失效机理,包括严重的粒内裂纹以及层到岩盐的转变,这减少了活性物质并增加了电荷转移电阻。而掺杂后滑动能垒增加的样品则很好地抑制了这一现象。令人印象深刻的是,这种定制策略可扩展到镁-铁-钛体系。这项研究为高能钠离子阴极的设计提供了一个新概念。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信