Edge Zeros and Boundary Spinons in Topological Mott Insulators

IF 8.1 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY
Niklas Wagner, Daniele Guerci, Andrew J. Millis, Giorgio Sangiovanni
{"title":"Edge Zeros and Boundary Spinons in Topological Mott Insulators","authors":"Niklas Wagner, Daniele Guerci, Andrew J. Millis, Giorgio Sangiovanni","doi":"10.1103/physrevlett.133.126504","DOIUrl":null,"url":null,"abstract":"We use a real-space slave-rotor theory of the physics of topological Mott insulators, using the Kane-Mele-Hubbard model as an example, and show that a topological gap in the Green function zeros corresponds to a gap in the bulk spinon spectrum and implies a gapless band of edge zeros and a spinon edge mode. We then consider an interface between a topological Mott insulator and a conventional topological insulator showing how the spinon edge mode of the topological Mott insulator combines with the spin part of the conventional electron topological edge state, leaving a non-Fermi liquid edge mode described by a gapless propagating holon and gapped spinon state. Our work demonstrates the physical meaning of Green function zeros and shows that interfaces between conventional and Mott topological insulators are a rich source of new physics.","PeriodicalId":20069,"journal":{"name":"Physical review letters","volume":null,"pages":null},"PeriodicalIF":8.1000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical review letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevlett.133.126504","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

We use a real-space slave-rotor theory of the physics of topological Mott insulators, using the Kane-Mele-Hubbard model as an example, and show that a topological gap in the Green function zeros corresponds to a gap in the bulk spinon spectrum and implies a gapless band of edge zeros and a spinon edge mode. We then consider an interface between a topological Mott insulator and a conventional topological insulator showing how the spinon edge mode of the topological Mott insulator combines with the spin part of the conventional electron topological edge state, leaving a non-Fermi liquid edge mode described by a gapless propagating holon and gapped spinon state. Our work demonstrates the physical meaning of Green function zeros and shows that interfaces between conventional and Mott topological insulators are a rich source of new physics.

Abstract Image

拓扑莫特绝缘体中的边缘零点和边界旋子
我们以 Kane-Mele-Hubbard 模型为例,使用拓扑莫特绝缘体物理学的实空间从转子理论,证明格林函数零点的拓扑缺口对应于体自旋子谱的缺口,并意味着边缘零点的无缺口带和自旋子边缘模式。然后,我们考虑了拓扑莫特绝缘体和传统拓扑绝缘体之间的界面,展示了拓扑莫特绝缘体的自旋子边缘模式如何与传统电子拓扑边缘态的自旋部分相结合,留下一个由无间隙传播的全子和间隙自旋子态描述的非费米液体边缘模式。我们的研究证明了格林函数零点的物理意义,并表明传统和莫特拓扑绝缘体之间的界面是新物理学的丰富源泉。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physical review letters
Physical review letters 物理-物理:综合
CiteScore
16.50
自引率
7.00%
发文量
2673
审稿时长
2.2 months
期刊介绍: Physical review letters(PRL)covers the full range of applied, fundamental, and interdisciplinary physics research topics: General physics, including statistical and quantum mechanics and quantum information Gravitation, astrophysics, and cosmology Elementary particles and fields Nuclear physics Atomic, molecular, and optical physics Nonlinear dynamics, fluid dynamics, and classical optics Plasma and beam physics Condensed matter and materials physics Polymers, soft matter, biological, climate and interdisciplinary physics, including networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信