Experimental evidence of seismic ruptures initiated by aseismic slip

IF 14.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Yohann Faure, Elsa Bayart
{"title":"Experimental evidence of seismic ruptures initiated by aseismic slip","authors":"Yohann Faure, Elsa Bayart","doi":"10.1038/s41467-024-52492-2","DOIUrl":null,"url":null,"abstract":"<p>Seismic faults release the stress accumulated during tectonic movement through rapid ruptures or slow-slip events. The role of slow-slip events is crucial as they impact earthquakes occurrence. However, the mechanisms by which slow-slip affects the failure of frictionally locked regions remain elusive. Here, building on laboratory experiments, we establish that a slow-slip region acts as a nucleation center for seismic rupture, enhancing earthquakes’ frequency. We emulate slow-slip regions by introducing a granular material along part of a laboratory fault. Measuring the fault’s response to shear reveals that the heterogeneity serves as an initial rupture, reducing the fault shear resistance. Additionally, the slow-slip region extends beyond the heterogeneity with increasing normal load, demonstrating that fault composition is not the only requirement for slow-slip. Our results show that slow-slip modifies rupture nucleation dynamics, highlighting the importance of accounting for the evolution of the slow-slip region under varying conditions for seismic hazard mitigation.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":null,"pages":null},"PeriodicalIF":14.7000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-024-52492-2","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Seismic faults release the stress accumulated during tectonic movement through rapid ruptures or slow-slip events. The role of slow-slip events is crucial as they impact earthquakes occurrence. However, the mechanisms by which slow-slip affects the failure of frictionally locked regions remain elusive. Here, building on laboratory experiments, we establish that a slow-slip region acts as a nucleation center for seismic rupture, enhancing earthquakes’ frequency. We emulate slow-slip regions by introducing a granular material along part of a laboratory fault. Measuring the fault’s response to shear reveals that the heterogeneity serves as an initial rupture, reducing the fault shear resistance. Additionally, the slow-slip region extends beyond the heterogeneity with increasing normal load, demonstrating that fault composition is not the only requirement for slow-slip. Our results show that slow-slip modifies rupture nucleation dynamics, highlighting the importance of accounting for the evolution of the slow-slip region under varying conditions for seismic hazard mitigation.

Abstract Image

地震断层通过快速断裂或慢滑事件释放构造运动过程中积累的应力。慢滑事件的作用至关重要,因为它们会影响地震的发生。然而,慢滑动对摩擦锁定区域的破坏产生影响的机制仍然难以捉摸。在此,我们以实验室实验为基础,确定了慢滑区域是地震破裂的成核中心,可提高地震频率。我们通过在实验室断层的部分区域引入颗粒材料来模拟慢滑区域。通过测量断层对剪切的响应,我们发现异质性起到了初始断裂的作用,降低了断层的抗剪性。此外,随着法向载荷的增加,慢滑区域超出了异质性,这表明断层成分并不是慢滑的唯一条件。我们的研究结果表明,慢滑改变了破裂成核动力学,强调了在不同条件下考虑慢滑区演变对减轻地震危害的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信