Yann Herrera Fuchs, Graham J. Edgar, Amanda E. Bates, Conor Waldock, Rick D. Stuart-Smith
{"title":"Limited net poleward movement of reef species over a decade of climate extremes","authors":"Yann Herrera Fuchs, Graham J. Edgar, Amanda E. Bates, Conor Waldock, Rick D. Stuart-Smith","doi":"10.1038/s41558-024-02116-w","DOIUrl":null,"url":null,"abstract":"Warming seas are expected to drive marine life poleward. However, few systematic observations confirm movement among entire communities at both warm and cool range edges. We analysed two continent-scale reef monitoring datasets to quantify changes in latitudinal range edges of 662 Australian shallow-water reef fishes and invertebrates over a decade punctuated by climate extremes. Temperate and tropical species both showed little net movement overall, with retreat often balancing expansion across the continent. Within regions, however, range edges shifted ~100 km per decade, on average, in the poleward or equatorward directions expected from warming or cooling. Although some species responded rapidly to temperature change, we found little evidence for mass poleward migration over the decade. Previous studies based on extreme species observations, rather than tracking all species through time, may have overestimated the prevalence, magnitude and longevity of range shifts amongst marine taxa. The authors use 12 years of broadscale survey data across 838 temperate and tropical coastal sites to investigate shifts in marine taxa range edges at the community level. They show that while some species respond rapidly to change, evidence for mass poleward migration is limited.","PeriodicalId":18974,"journal":{"name":"Nature Climate Change","volume":"14 10","pages":"1087-1092"},"PeriodicalIF":29.6000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Climate Change","FirstCategoryId":"89","ListUrlMain":"https://www.nature.com/articles/s41558-024-02116-w","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Warming seas are expected to drive marine life poleward. However, few systematic observations confirm movement among entire communities at both warm and cool range edges. We analysed two continent-scale reef monitoring datasets to quantify changes in latitudinal range edges of 662 Australian shallow-water reef fishes and invertebrates over a decade punctuated by climate extremes. Temperate and tropical species both showed little net movement overall, with retreat often balancing expansion across the continent. Within regions, however, range edges shifted ~100 km per decade, on average, in the poleward or equatorward directions expected from warming or cooling. Although some species responded rapidly to temperature change, we found little evidence for mass poleward migration over the decade. Previous studies based on extreme species observations, rather than tracking all species through time, may have overestimated the prevalence, magnitude and longevity of range shifts amongst marine taxa. The authors use 12 years of broadscale survey data across 838 temperate and tropical coastal sites to investigate shifts in marine taxa range edges at the community level. They show that while some species respond rapidly to change, evidence for mass poleward migration is limited.
期刊介绍:
Nature Climate Change is dedicated to addressing the scientific challenge of understanding Earth's changing climate and its societal implications. As a monthly journal, it publishes significant and cutting-edge research on the nature, causes, and impacts of global climate change, as well as its implications for the economy, policy, and the world at large.
The journal publishes original research spanning the natural and social sciences, synthesizing interdisciplinary research to provide a comprehensive understanding of climate change. It upholds the high standards set by all Nature-branded journals, ensuring top-tier original research through a fair and rigorous review process, broad readership access, high standards of copy editing and production, rapid publication, and independence from academic societies and other vested interests.
Nature Climate Change serves as a platform for discussion among experts, publishing opinion, analysis, and review articles. It also features Research Highlights to highlight important developments in the field and original reporting from renowned science journalists in the form of feature articles.
Topics covered in the journal include adaptation, atmospheric science, ecology, economics, energy, impacts and vulnerability, mitigation, oceanography, policy, sociology, and sustainability, among others.