Non-linear MRD codes from cones over exterior sets

IF 1.4 2区 数学 Q3 COMPUTER SCIENCE, THEORY & METHODS
Nicola Durante, Giovanni Giuseppe Grimaldi, Giovanni Longobardi
{"title":"Non-linear MRD codes from cones over exterior sets","authors":"Nicola Durante, Giovanni Giuseppe Grimaldi, Giovanni Longobardi","doi":"10.1007/s10623-024-01492-w","DOIUrl":null,"url":null,"abstract":"<p>By using the notion of a <i>d</i>-embedding <span>\\(\\Gamma \\)</span> of a (canonical) subgeometry <span>\\(\\Sigma \\)</span> and of exterior sets with respect to the <i>h</i>-secant variety <span>\\(\\Omega _{h}({\\mathcal {A}})\\)</span> of a subset <span>\\({\\mathcal {A}}\\)</span>, <span>\\( 0 \\le h \\le n-1\\)</span>, in the finite projective space <span>\\({\\textrm{PG}}(n-1,q^n)\\)</span>, <span>\\(n \\ge 3\\)</span>, in this article we construct a class of non-linear (<i>n</i>, <i>n</i>, <i>q</i>; <i>d</i>)-MRD codes for any <span>\\( 2 \\le d \\le n-1\\)</span>. A code of this class <span>\\({\\mathcal {C}}_{\\sigma ,T}\\)</span>, where <span>\\(1\\in T \\subseteq {\\mathbb {F}}_q^*\\)</span> and <span>\\(\\sigma \\)</span> is a generator of <span>\\(\\textrm{Gal}({\\mathbb {F}}_{q^n}|{\\mathbb {F}}_q)\\)</span>, arises from a cone of <span>\\({\\textrm{PG}}(n-1,q^n)\\)</span> with vertex an <span>\\((n-d-2)\\)</span>-dimensional subspace over a maximum exterior set <span>\\({\\mathcal {E}}\\)</span> with respect to <span>\\(\\Omega _{d-2}(\\Gamma )\\)</span>. We prove that the codes introduced in Cossidente et al (Des Codes Cryptogr 79:597–609, 2016), Donati and Durante (Des Codes Cryptogr 86:1175–1184, 2018), Durante and Siciliano (Electron J Comb, 2017) are suitable punctured ones of <span>\\({\\mathcal {C}}_{\\sigma ,T}\\)</span> and we solve completely the inequivalence issue for this class showing that <span>\\({\\mathcal {C}}_{\\sigma ,T}\\)</span> is neither equivalent nor adjointly equivalent to the non-linear MRD codes <span>\\({\\mathcal {C}}_{n,k,\\sigma ,I}\\)</span>, <span>\\(I \\subseteq {\\mathbb {F}}_q\\)</span>, obtained in Otal and Özbudak (Finite Fields Appl 50:293–303, 2018).</p>","PeriodicalId":11130,"journal":{"name":"Designs, Codes and Cryptography","volume":"38 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Designs, Codes and Cryptography","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10623-024-01492-w","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

By using the notion of a d-embedding \(\Gamma \) of a (canonical) subgeometry \(\Sigma \) and of exterior sets with respect to the h-secant variety \(\Omega _{h}({\mathcal {A}})\) of a subset \({\mathcal {A}}\), \( 0 \le h \le n-1\), in the finite projective space \({\textrm{PG}}(n-1,q^n)\), \(n \ge 3\), in this article we construct a class of non-linear (nnqd)-MRD codes for any \( 2 \le d \le n-1\). A code of this class \({\mathcal {C}}_{\sigma ,T}\), where \(1\in T \subseteq {\mathbb {F}}_q^*\) and \(\sigma \) is a generator of \(\textrm{Gal}({\mathbb {F}}_{q^n}|{\mathbb {F}}_q)\), arises from a cone of \({\textrm{PG}}(n-1,q^n)\) with vertex an \((n-d-2)\)-dimensional subspace over a maximum exterior set \({\mathcal {E}}\) with respect to \(\Omega _{d-2}(\Gamma )\). We prove that the codes introduced in Cossidente et al (Des Codes Cryptogr 79:597–609, 2016), Donati and Durante (Des Codes Cryptogr 86:1175–1184, 2018), Durante and Siciliano (Electron J Comb, 2017) are suitable punctured ones of \({\mathcal {C}}_{\sigma ,T}\) and we solve completely the inequivalence issue for this class showing that \({\mathcal {C}}_{\sigma ,T}\) is neither equivalent nor adjointly equivalent to the non-linear MRD codes \({\mathcal {C}}_{n,k,\sigma ,I}\), \(I \subseteq {\mathbb {F}}_q\), obtained in Otal and Özbudak (Finite Fields Appl 50:293–303, 2018).

来自外部集合锥体的非线性 MRD 代码
通过使用一个(典型的)子几何的d嵌入的概念,以及关于一个子集({\mathcal {A}})的h-等差数列的外部集合的概念,在有限投影空间({\textrm{PG}}(n-1,q^n))中,({\textrm{PG}}(n-1,q^n)),({\textrm{PG}}(n-1,q^n)),({\textrm{PG}}(n-1,q^n))、\( 0 \le h \le n-1\), in the finite projective space \({\textrm{PG}}(n-1,q^n)\), \(n \ge 3\), in this article we construct a class of non-linear (n, n, q. d)-MRD编码;d) -MRD 代码。这一类的代码是 \({\mathcal {C}}_{\sigma ,T}\), 其中 \(1\in T \subseteq {\mathbb {F}_q^*\) 和 \(\sigma \) 是 \(\textrm{Gal}({\mathbb {F}}_{q^n}|{\mathbb {F}_q)\)的生成器、)的一个锥体,其顶点是一个关于 \(\Omega _{d-2}(\Gamma )\) 的最大外部集合 \({\mathcal {E}}\) 的 \((n-d-2)\)维子空间。我们证明了 Cossidente et al (Des Codes Cryptogr 79:597-609, 2016), Donati and Durante (Des Codes Cryptogr 86:1175-1184, 2018)、Durante 和 Siciliano(Electron J Comb, 2017)都是 \({\mathcal {C}}_{\sigma ,T}\)的合适点阵,我们完全解决了这一类的不等价性问题,表明 \({\mathcal {C}}_{\sigma 、T}\) 与 Otal 和 Özbudak (Finite Fields Appl 50. 293-303, 2018) 中得到的非线性 MRD 代码 \({\mathcal {C}}_{n,k,\sigma ,I}\), \(I \subseteq {\mathbb {F}}_q\) 既不等价也不邻接等价:293-303, 2018).
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Designs, Codes and Cryptography
Designs, Codes and Cryptography 工程技术-计算机:理论方法
CiteScore
2.80
自引率
12.50%
发文量
157
审稿时长
16.5 months
期刊介绍: Designs, Codes and Cryptography is an archival peer-reviewed technical journal publishing original research papers in the designated areas. There is a great deal of activity in design theory, coding theory and cryptography, including a substantial amount of research which brings together more than one of the subjects. While many journals exist for each of the individual areas, few encourage the interaction of the disciplines. The journal was founded to meet the needs of mathematicians, engineers and computer scientists working in these areas, whose interests extend beyond the bounds of any one of the individual disciplines. The journal provides a forum for high quality research in its three areas, with papers touching more than one of the areas especially welcome. The journal also considers high quality submissions in the closely related areas of finite fields and finite geometries, which provide important tools for both the construction and the actual application of designs, codes and cryptographic systems. In particular, it includes (mostly theoretical) papers on computational aspects of finite fields. It also considers topics in sequence design, which frequently admit equivalent formulations in the journal’s main areas. Designs, Codes and Cryptography is mathematically oriented, emphasizing the algebraic and geometric aspects of the areas it covers. The journal considers high quality papers of both a theoretical and a practical nature, provided they contain a substantial amount of mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信