Structure-Agnostic Bioactivity-Driven Combinatorial Biosynthesis Reveals New Antidiabetic and Anticancer Triterpenoids

IF 16.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Yong Zhao, Yao-Tao Duan, Jie Zang, Morten H. Raadam, Irini Pateraki, Karel Miettinen, Dan Staerk, Sotirios C. Kampranis
{"title":"Structure-Agnostic Bioactivity-Driven Combinatorial Biosynthesis Reveals New Antidiabetic and Anticancer Triterpenoids","authors":"Yong Zhao, Yao-Tao Duan, Jie Zang, Morten H. Raadam, Irini Pateraki, Karel Miettinen, Dan Staerk, Sotirios C. Kampranis","doi":"10.1002/anie.202416218","DOIUrl":null,"url":null,"abstract":"Although combinatorial biosynthesis can dramatically expand the chemical structures of bioactive natural products to identify molecules with improved characteristics, progress in this direction has been hampered by the difficulty in isolating and characterizing the numerous produced compounds. This challenge could be overcome with improved designs that enable the analysis of the bioactivity of the produced metabolites ahead of the time-consuming isolation procedures. Herein, we showcase a structure-agnostic bioactivity-driven combinatorial biosynthesis workflow that introduces bioactivity assessment as a selection-driving force to guide iterative combinatorial biosynthesis rounds towards enzyme combinations with increasing bioactivity. We apply this approach to produce triterpenoids with potent bioactivity against PTP1B, a promising molecular target for diabetes and cancer treatment. We demonstrate that the bioactivity-guided workflow can expedite the combinatorial process by enabling the narrowing down of more than 1000 possible combinations to only five highly potent candidates. By focusing the isolation and structural elucidation effort on only these five strains, we reveal 20 structurally diverse triterpenoids, including four new compounds and a novel triterpenoid-anthranilic acid hybrid, as potent PTP1B inhibitors. This workflow expedites hit identification by combinatorial biosynthesis and is applicable to many other types of bioactive natural products, therefore providing a strategy for accelerated drug discovery.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":null,"pages":null},"PeriodicalIF":16.1000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202416218","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Although combinatorial biosynthesis can dramatically expand the chemical structures of bioactive natural products to identify molecules with improved characteristics, progress in this direction has been hampered by the difficulty in isolating and characterizing the numerous produced compounds. This challenge could be overcome with improved designs that enable the analysis of the bioactivity of the produced metabolites ahead of the time-consuming isolation procedures. Herein, we showcase a structure-agnostic bioactivity-driven combinatorial biosynthesis workflow that introduces bioactivity assessment as a selection-driving force to guide iterative combinatorial biosynthesis rounds towards enzyme combinations with increasing bioactivity. We apply this approach to produce triterpenoids with potent bioactivity against PTP1B, a promising molecular target for diabetes and cancer treatment. We demonstrate that the bioactivity-guided workflow can expedite the combinatorial process by enabling the narrowing down of more than 1000 possible combinations to only five highly potent candidates. By focusing the isolation and structural elucidation effort on only these five strains, we reveal 20 structurally diverse triterpenoids, including four new compounds and a novel triterpenoid-anthranilic acid hybrid, as potent PTP1B inhibitors. This workflow expedites hit identification by combinatorial biosynthesis and is applicable to many other types of bioactive natural products, therefore providing a strategy for accelerated drug discovery.
虽然组合生物合成可以极大地扩展具有生物活性的天然产物的化学结构,从而鉴定出具有更好特性的分子,但由于难以分离和鉴定所产生的大量化合物,这一方向的进展受到了阻碍。通过改进设计,可以在耗时的分离过程之前分析所产生的代谢物的生物活性,从而克服这一难题。在本文中,我们展示了一种结构鉴定生物活性驱动的组合生物合成工作流程,该流程将生物活性评估作为一种选择驱动力,引导迭代组合生物合成轮次,以获得生物活性不断提高的酶组合。我们采用这种方法生产出了对 PTP1B 具有强大生物活性的三萜类化合物,PTP1B 是治疗糖尿病和癌症的理想分子靶标。我们证明,以生物活性为导向的工作流程可以加快组合过程,将 1000 多种可能的组合缩小到只有五种高效力候选化合物。通过将分离和结构阐明工作集中在这五种菌株上,我们发现了 20 种结构不同的三萜类化合物,包括四种新化合物和一种新型三萜类-氨基苯甲酸混合物,它们都是有效的 PTP1B 抑制剂。这一工作流程通过组合生物合成加速了新药鉴定,并适用于许多其他类型的生物活性天然产物,因此为加速药物发现提供了一种策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信