Spatial dissociation between recognition and navigation in the primate hippocampus

IF 11.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Xiao Xu, Kechen Du, Dun Mao
{"title":"Spatial dissociation between recognition and navigation in the primate hippocampus","authors":"Xiao Xu,&nbsp;Kechen Du,&nbsp;Dun Mao","doi":"10.1126/sciadv.ado7392","DOIUrl":null,"url":null,"abstract":"<div >The primate hippocampus, crucial for both episodic memory and spatial navigation, remains an enigma regarding whether these functions share the same neural substrates. We investigated how identical hippocampal neurons in macaque monkeys dynamically shifted their representations between tasks. In a recognition memory task, a notable fraction of hippocampal neurons showed that rate modulation strongly correlated with recognition performance. During free navigation in an open arena, spatial view, rather than position, predominantly influenced the spatial selectivity of hippocampal neurons. Neurons selective for recognition memory displayed minimal spatial tuning, while spatially tuned neurons exhibited limited memory-related activity. These neural correlates of recognition memory and space were more pronounced in the anterior and posterior portions of the hippocampus, respectively. These opposing gradients extended further into the anterior and posterior neocortices. Overall, our findings suggest the presence of orthogonal long-axis gradients between recognition memory and spatial navigation in the hippocampal-neocortical networks of macaque monkeys.</div>","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":null,"pages":null},"PeriodicalIF":11.7000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.science.org/doi/reader/10.1126/sciadv.ado7392","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Advances","FirstCategoryId":"103","ListUrlMain":"https://www.science.org/doi/10.1126/sciadv.ado7392","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The primate hippocampus, crucial for both episodic memory and spatial navigation, remains an enigma regarding whether these functions share the same neural substrates. We investigated how identical hippocampal neurons in macaque monkeys dynamically shifted their representations between tasks. In a recognition memory task, a notable fraction of hippocampal neurons showed that rate modulation strongly correlated with recognition performance. During free navigation in an open arena, spatial view, rather than position, predominantly influenced the spatial selectivity of hippocampal neurons. Neurons selective for recognition memory displayed minimal spatial tuning, while spatially tuned neurons exhibited limited memory-related activity. These neural correlates of recognition memory and space were more pronounced in the anterior and posterior portions of the hippocampus, respectively. These opposing gradients extended further into the anterior and posterior neocortices. Overall, our findings suggest the presence of orthogonal long-axis gradients between recognition memory and spatial navigation in the hippocampal-neocortical networks of macaque monkeys.

Abstract Image

灵长类海马体中识别与导航之间的空间分离
灵长类动物的海马对偶发记忆和空间导航都至关重要,但这些功能是否共享相同的神经基质仍是一个谜。我们研究了猕猴体内相同的海马神经元如何在不同任务之间动态地转换其表象。在识别记忆任务中,有相当一部分海马神经元显示出速率调制与识别表现密切相关。在开放场中自由导航时,影响海马神经元空间选择性的主要是空间视图而不是位置。对识别记忆有选择性的神经元表现出最小的空间调谐,而空间调谐神经元则表现出有限的记忆相关活动。识别记忆和空间的这些神经相关性分别在海马的前部和后部更为明显。这些相反的梯度进一步延伸到新皮质的前部和后部。总之,我们的研究结果表明,在猕猴的海马-新皮层网络中,识别记忆和空间导航之间存在正交的长轴梯度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Science Advances
Science Advances 综合性期刊-综合性期刊
CiteScore
21.40
自引率
1.50%
发文量
1937
审稿时长
29 weeks
期刊介绍: Science Advances, an open-access journal by AAAS, publishes impactful research in diverse scientific areas. It aims for fair, fast, and expert peer review, providing freely accessible research to readers. Led by distinguished scientists, the journal supports AAAS's mission by extending Science magazine's capacity to identify and promote significant advances. Evolving digital publishing technologies play a crucial role in advancing AAAS's global mission for science communication and benefitting humankind.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信