Dustin G. Wilkerson, Chase R. Crowell, Christine D. Smart, Lawrence B. Smart
{"title":"QTL Mapping of Melampsora Leaf Rust Resistance and Yield Component Traits in the Salix F1 Hybrid Common Parent Population","authors":"Dustin G. Wilkerson, Chase R. Crowell, Christine D. Smart, Lawrence B. Smart","doi":"10.1111/gcbb.70002","DOIUrl":null,"url":null,"abstract":"<p>The first step in trait introgression is to identify and assess novel sources of variation. For shrub willow (<i>Salix</i>) breeders, there is an abundance of understudied species within a genus that readily hybridizes. Breeding targets in shrub willow center on traits contributing to biomass yield for bioenergy. These include stem biomass, insect and pathogen resistance, and leaf architecture traits. More specifically, breeding for durable resistance to willow leaf rust (<i>Melampsora</i> spp.) is of particular importance as the pathogen can significantly reduce biomass yields in commercial production. The <i>Salix</i> F<sub>1</sub> hybrid common parent population (<i>Salix</i> F<sub>1</sub> HCP) was created to characterize the variation among eight species-hybrid families and map QTL for targeted traits. A female and male <i>S. purpurea</i> were used as common parents in crosses made to male <i>S. suchowensis</i>, <i>S. viminalis</i>, <i>S. koriyanagi</i>, and <i>S. udensis</i> and female <i>S. viminalis</i>, <i>S. integra</i>, <i>S. suchowensis</i> to produce eight families that were planted in field trials at Cornell AgriTech in Geneva, NY and phenotyped. Using 16 previously described parental backcross linkage maps and two newly generated <i>S. purpurea</i> consensus maps, we identified 215 QTL across all eight families and in every parent. These included 15 leaf rust severity, 61 herbivory, 65 leaf architecture, and 74 yield component QTL, resulting in 50 unique overlapping regions within the population. These genetic loci serve as an important foundation for future shrub willow breeding, and each interspecific family was identified as a novel source of useful alleles for trait introgression into high yielding cultivars.</p>","PeriodicalId":55126,"journal":{"name":"Global Change Biology Bioenergy","volume":"16 10","pages":""},"PeriodicalIF":5.9000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/gcbb.70002","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global Change Biology Bioenergy","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/gcbb.70002","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0
Abstract
The first step in trait introgression is to identify and assess novel sources of variation. For shrub willow (Salix) breeders, there is an abundance of understudied species within a genus that readily hybridizes. Breeding targets in shrub willow center on traits contributing to biomass yield for bioenergy. These include stem biomass, insect and pathogen resistance, and leaf architecture traits. More specifically, breeding for durable resistance to willow leaf rust (Melampsora spp.) is of particular importance as the pathogen can significantly reduce biomass yields in commercial production. The Salix F1 hybrid common parent population (Salix F1 HCP) was created to characterize the variation among eight species-hybrid families and map QTL for targeted traits. A female and male S. purpurea were used as common parents in crosses made to male S. suchowensis, S. viminalis, S. koriyanagi, and S. udensis and female S. viminalis, S. integra, S. suchowensis to produce eight families that were planted in field trials at Cornell AgriTech in Geneva, NY and phenotyped. Using 16 previously described parental backcross linkage maps and two newly generated S. purpurea consensus maps, we identified 215 QTL across all eight families and in every parent. These included 15 leaf rust severity, 61 herbivory, 65 leaf architecture, and 74 yield component QTL, resulting in 50 unique overlapping regions within the population. These genetic loci serve as an important foundation for future shrub willow breeding, and each interspecific family was identified as a novel source of useful alleles for trait introgression into high yielding cultivars.
期刊介绍:
GCB Bioenergy is an international journal publishing original research papers, review articles and commentaries that promote understanding of the interface between biological and environmental sciences and the production of fuels directly from plants, algae and waste. The scope of the journal extends to areas outside of biology to policy forum, socioeconomic analyses, technoeconomic analyses and systems analysis. Papers do not need a global change component for consideration for publication, it is viewed as implicit that most bioenergy will be beneficial in avoiding at least a part of the fossil fuel energy that would otherwise be used.
Key areas covered by the journal:
Bioenergy feedstock and bio-oil production: energy crops and algae their management,, genomics, genetic improvements, planting, harvesting, storage, transportation, integrated logistics, production modeling, composition and its modification, pests, diseases and weeds of feedstocks. Manuscripts concerning alternative energy based on biological mimicry are also encouraged (e.g. artificial photosynthesis).
Biological Residues/Co-products: from agricultural production, forestry and plantations (stover, sugar, bio-plastics, etc.), algae processing industries, and municipal sources (MSW).
Bioenergy and the Environment: ecosystem services, carbon mitigation, land use change, life cycle assessment, energy and greenhouse gas balances, water use, water quality, assessment of sustainability, and biodiversity issues.
Bioenergy Socioeconomics: examining the economic viability or social acceptability of crops, crops systems and their processing, including genetically modified organisms [GMOs], health impacts of bioenergy systems.
Bioenergy Policy: legislative developments affecting biofuels and bioenergy.
Bioenergy Systems Analysis: examining biological developments in a whole systems context.