Lattice reduced and complete convex bodies

IF 1 2区 数学 Q1 MATHEMATICS
Giulia Codenotti, Ansgar Freyer
{"title":"Lattice reduced and complete convex bodies","authors":"Giulia Codenotti,&nbsp;Ansgar Freyer","doi":"10.1112/jlms.12982","DOIUrl":null,"url":null,"abstract":"<p>The purpose of this paper is to study convex bodies <span></span><math>\n <semantics>\n <mi>C</mi>\n <annotation>$C$</annotation>\n </semantics></math> for which there exists no convex body <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>C</mi>\n <mo>′</mo>\n </msup>\n <mi>⊊</mi>\n <mi>C</mi>\n </mrow>\n <annotation>$C^\\prime \\subsetneq C$</annotation>\n </semantics></math> of the same lattice width. Such bodies will be called ‘lattice reduced’, and they occur naturally in the study of the flatness constant in integer programming, as well as other problems related to lattice width. We show that any simplex that realizes the flatness constant must be lattice reduced and prove structural properties of general lattice reduced convex bodies: they are polytopes with at most <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mn>2</mn>\n <mrow>\n <mi>d</mi>\n <mo>+</mo>\n <mn>1</mn>\n </mrow>\n </msup>\n <mo>−</mo>\n <mn>2</mn>\n </mrow>\n <annotation>$2^{d+1}-2$</annotation>\n </semantics></math> vertices and their lattice width is attained by at least <span></span><math>\n <semantics>\n <mrow>\n <mi>Ω</mi>\n <mo>(</mo>\n <mi>log</mi>\n <mi>d</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$\\Omega (\\log d)$</annotation>\n </semantics></math> independent directions. Strongly related to lattice reduced bodies are the ‘lattice complete bodies’, which are convex bodies <span></span><math>\n <semantics>\n <mi>C</mi>\n <annotation>$C$</annotation>\n </semantics></math> for which there exists no <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>C</mi>\n <mo>′</mo>\n </msup>\n <mo>⊋</mo>\n <mi>C</mi>\n </mrow>\n <annotation>$C^\\prime \\supsetneq C$</annotation>\n </semantics></math> such that <span></span><math>\n <semantics>\n <msup>\n <mi>C</mi>\n <mo>′</mo>\n </msup>\n <annotation>$C^\\prime$</annotation>\n </semantics></math> has the same lattice diameter as <span></span><math>\n <semantics>\n <mi>C</mi>\n <annotation>$C$</annotation>\n </semantics></math>. Similar structural results are obtained for lattice complete bodies. Moreover, various construction methods for lattice reduced and complete convex bodies are presented.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"110 4","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.12982","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the London Mathematical Society-Second Series","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/jlms.12982","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

The purpose of this paper is to study convex bodies C $C$ for which there exists no convex body C C $C^\prime \subsetneq C$ of the same lattice width. Such bodies will be called ‘lattice reduced’, and they occur naturally in the study of the flatness constant in integer programming, as well as other problems related to lattice width. We show that any simplex that realizes the flatness constant must be lattice reduced and prove structural properties of general lattice reduced convex bodies: they are polytopes with at most 2 d + 1 2 $2^{d+1}-2$ vertices and their lattice width is attained by at least Ω ( log d ) $\Omega (\log d)$ independent directions. Strongly related to lattice reduced bodies are the ‘lattice complete bodies’, which are convex bodies C $C$ for which there exists no C C $C^\prime \supsetneq C$ such that C $C^\prime$ has the same lattice diameter as C $C$ . Similar structural results are obtained for lattice complete bodies. Moreover, various construction methods for lattice reduced and complete convex bodies are presented.

Abstract Image

晶格缩小和完整凸体
本文的目的是研究凸体 C $C$,对于这些凸体 C ′ ⊊ C $C^\prime \subsetneq C$,不存在网格宽度相同的凸体 C ′ ⊊ C $C^\prime \subsetneq C$。这样的体将被称为 "格子缩小体",它们会自然地出现在整数编程中平坦常数的研究中,以及其他与格子宽度相关的问题中。我们证明了任何实现平整度常数的单纯形都必须是晶格缩小的,并证明了一般晶格缩小凸体的结构性质:它们是顶点至多为 2 d + 1 - 2 $2^{d+1}-2$ 的多面体,其晶格宽度至少由 Ω ( log d ) $\Omega (\log d)$ 独立方向达到。与晶格缩小体密切相关的是 "晶格完全体",即不存在任何 C ′ ⊋ C $C^\prime \supsetneq C$ 使 C ′ $C^\prime$ 与 C $C$ 具有相同晶格直径的凸体 C $C$。类似的结构结果也适用于晶格完全体。此外,还提出了格子缩小凸体和完整凸体的各种构造方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
186
审稿时长
6-12 weeks
期刊介绍: The Journal of the London Mathematical Society has been publishing leading research in a broad range of mathematical subject areas since 1926. The Journal welcomes papers on subjects of general interest that represent a significant advance in mathematical knowledge, as well as submissions that are deemed to stimulate new interest and research activity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信