Blade-Coating (100)-Oriented α-FAPbI3 Perovskite Films via Crystal Surface Energy Regulation for Efficient and Stable Inverted Perovskite Photovoltaics

Wenhuai Feng, Xudong Liu, Gengling Liu, Guo Yang, Yuxuan Fang, Jinliang Shen, Bowen Jin, Xi Chen, Yu-Hua Huang, Prof. Xu-Dong Wang, Prof. Congcong Wu, Prof. Shaopeng Yang, Prof. Wu-Qiang Wu
{"title":"Blade-Coating (100)-Oriented α-FAPbI3 Perovskite Films via Crystal Surface Energy Regulation for Efficient and Stable Inverted Perovskite Photovoltaics","authors":"Wenhuai Feng,&nbsp;Xudong Liu,&nbsp;Gengling Liu,&nbsp;Guo Yang,&nbsp;Yuxuan Fang,&nbsp;Jinliang Shen,&nbsp;Bowen Jin,&nbsp;Xi Chen,&nbsp;Yu-Hua Huang,&nbsp;Prof. Xu-Dong Wang,&nbsp;Prof. Congcong Wu,&nbsp;Prof. Shaopeng Yang,&nbsp;Prof. Wu-Qiang Wu","doi":"10.1002/ange.202403196","DOIUrl":null,"url":null,"abstract":"<p>Photoactive black-phase formamidinium lead triiodide (α-FAPbI<sub>3</sub>) perovskite has dominated the prevailing high-performance perovskite solar cells (PSCs), normally for those spin-coated, conventional <i>n-i-p</i> structured devices. Unfortunately, α-FAPbI<sub>3</sub> has not been made full use of its advantages in inverted <i>p-i-n</i> structured PSCs fabricated via blade-coating techniques owing to uncontrollable crystallization kinetics and complicated phase evolution of FAPbI<sub>3</sub> perovskites during film formation. Herein, a customized crystal surface energy regulation strategy has been innovatively developed by incorporating 0.5 mol % of N-aminoethylpiperazine hydroiodide (NAPI) additive into α-FAPbI<sub>3</sub> crystal-derived perovskite ink, which enabled the formation of highly-oriented α-FAPbI<sub>3</sub> films. We deciphered the phase transformation mechanisms and crystallization kinetics of blade-coated α-FAPbI<sub>3</sub> perovskite films via combining a series of <i>in-situ</i> characterizations and theoretical calculations. Interestingly, the strong chemical interactions between the NAPI and inorganic Pb−I framework help to reduce the surface energy of (100) crystal plane by 42 %, retard the crystallization rate and lower the formation energy of α-FAPbI<sub>3</sub>. Benefited from multifaceted advantages of promoted charge extraction and suppressed non-radiative recombination, the resultant blade-coated inverted PSCs based on (100)-oriented α-FAPbI<sub>3</sub> perovskite films realized promising efficiencies up to 24.16 % (~26.5 % higher than that of the randomly-oriented counterparts), accompanied by improved operational stability. This result represented one of the best performances reported to date for FAPbI<sub>3</sub>-based inverted PSCs fabricated via scalable deposition methods.</p>","PeriodicalId":7803,"journal":{"name":"Angewandte Chemie","volume":"136 39","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ange.202403196","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Photoactive black-phase formamidinium lead triiodide (α-FAPbI3) perovskite has dominated the prevailing high-performance perovskite solar cells (PSCs), normally for those spin-coated, conventional n-i-p structured devices. Unfortunately, α-FAPbI3 has not been made full use of its advantages in inverted p-i-n structured PSCs fabricated via blade-coating techniques owing to uncontrollable crystallization kinetics and complicated phase evolution of FAPbI3 perovskites during film formation. Herein, a customized crystal surface energy regulation strategy has been innovatively developed by incorporating 0.5 mol % of N-aminoethylpiperazine hydroiodide (NAPI) additive into α-FAPbI3 crystal-derived perovskite ink, which enabled the formation of highly-oriented α-FAPbI3 films. We deciphered the phase transformation mechanisms and crystallization kinetics of blade-coated α-FAPbI3 perovskite films via combining a series of in-situ characterizations and theoretical calculations. Interestingly, the strong chemical interactions between the NAPI and inorganic Pb−I framework help to reduce the surface energy of (100) crystal plane by 42 %, retard the crystallization rate and lower the formation energy of α-FAPbI3. Benefited from multifaceted advantages of promoted charge extraction and suppressed non-radiative recombination, the resultant blade-coated inverted PSCs based on (100)-oriented α-FAPbI3 perovskite films realized promising efficiencies up to 24.16 % (~26.5 % higher than that of the randomly-oriented counterparts), accompanied by improved operational stability. This result represented one of the best performances reported to date for FAPbI3-based inverted PSCs fabricated via scalable deposition methods.

Abstract Image

通过晶体表面能量调节对 (100) 方向的 α-FAPbI3 Perovskite 薄膜进行刀片涂层,实现高效稳定的反向 Perovskite 光伏技术
光活性黑相三碘化甲脒铅 (α-FAPbI3)过氧化物在目前的高性能过氧化物太阳能电池(PSCs)中占据主导地位,通常用于旋涂的传统 ni-p 结构器件。遗憾的是,由于 FAPbI3 包晶体在成膜过程中的结晶动力学不可控且相变复杂,因此在通过叶片涂层技术制造的倒 pi-i-n 结构 PSC 中,α-FAPbI3 并未充分发挥其优势。在此,我们创新性地开发了一种定制的晶体表面能调节策略,即在α-FAPbI3晶体衍生的包晶墨水中加入 0.5 mol % 的 N-aminoethylpiperazine hydroiodide (NAPI) 添加剂,从而形成高取向性的α-FAPbI3 薄膜。我们通过一系列原位表征和理论计算,破译了叶片涂层 α-FAPbI3 包晶薄膜的相变机制和结晶动力学。有趣的是,NAPI 与无机 Pb-I 框架之间的强化学作用有助于将 (100) 晶面的表面能降低 42%,延缓结晶速率并降低 α-FAPbI3 的形成能。得益于促进电荷萃取和抑制非辐射重组的多重优势,基于(100)取向 α-FAPbI3 包晶石薄膜的叶片涂层倒置式 PSCs 实现了高达 24.16% 的预期效率(比随机取向的同类产品高出约 26.5%),同时还提高了运行稳定性。这一结果是迄今为止报告的通过可扩展沉积方法制造的基于 FAPbI3 的倒置 PSC 的最佳性能之一。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Angewandte Chemie
Angewandte Chemie 化学科学, 有机化学, 有机合成
自引率
0.00%
发文量
0
审稿时长
1 months
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信