Adsorption behavior and mechanism of NH2-MIL-101(Cr)@COFs@SA composite adsorbent for tetracycline removal

IF 4.1 2区 化学 Q2 POLYMER SCIENCE
{"title":"Adsorption behavior and mechanism of NH2-MIL-101(Cr)@COFs@SA composite adsorbent for tetracycline removal","authors":"","doi":"10.1016/j.polymer.2024.127631","DOIUrl":null,"url":null,"abstract":"<div><p>Herein, we employed a rational approach to develop a hydrogel composite material by encapsulating NH<sub>2</sub>-MIL-101(Cr)/covalent organic frameworks (COFs) in sodium alginate (SA) to effectively capture of tetracycline (TC). Experimental tests and various characterizations (including Fourier-transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), thermogravimetric analysis (TGA), scanning electron spectroscopy (SEM), Brunauer-Emmett-Teller (BET), and X-ray photoelectron spectroscopy (XPS)) confirmed that the NH<sub>2</sub>-MIL-101(Cr)@COFs@SA composite exhibited a more robust, multilayer pore structure with abundant active functional groups. Under conditions of 298 K and pH = 7, the NH<sub>2</sub>-MIL-101(Cr)@COFs@SA adsorbent demonstrated remarkable TC adsorption capability, achieving a removal rate of 96.38 % in 120 min and a q<sub>max</sub> of 252.6 mg/g at 298 K by Langmuir model. Kinetic analysis indicated that the interaction between TC and NH<sub>2</sub>-MIL-101(Cr)@COFs@SA follows a pseudo-second-order model, suggesting that chemisoption governs the process. The Langmuir model and thermodynamic analysis suggested that TC adsorption follows a monolayer sorption pattern and is spontaneous and exothermic. Even in the presence of other ions, NH<sub>2</sub>-MIL-101(Cr)@COFs@SA maintained high efficiency for TC adsorption, demonstrating superior selectivity. NH<sub>2</sub>-MIL-101(Cr)@COFs@SA demonstrated remarkable recyclability, with only a minimal reduction in the removal efficiency (85.5 % and 142 mg/g) after 10 cycles of adsorption and regeneration. Various analytical techniques, including FTIR spectroscopy, SEM, EDX, XPS, and density functional theory (DFT) calculations of adsorption energy were used to elucidate the TC adsorption mechanisms by NH<sub>2</sub>-MIL-101(Cr)@COFs@SA. The adsorption process primarily involved π-π stacking, hydrogen bonding, electrostatic interactions, and complexation.</p></div>","PeriodicalId":405,"journal":{"name":"Polymer","volume":null,"pages":null},"PeriodicalIF":4.1000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0032386124009674","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Herein, we employed a rational approach to develop a hydrogel composite material by encapsulating NH2-MIL-101(Cr)/covalent organic frameworks (COFs) in sodium alginate (SA) to effectively capture of tetracycline (TC). Experimental tests and various characterizations (including Fourier-transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), thermogravimetric analysis (TGA), scanning electron spectroscopy (SEM), Brunauer-Emmett-Teller (BET), and X-ray photoelectron spectroscopy (XPS)) confirmed that the NH2-MIL-101(Cr)@COFs@SA composite exhibited a more robust, multilayer pore structure with abundant active functional groups. Under conditions of 298 K and pH = 7, the NH2-MIL-101(Cr)@COFs@SA adsorbent demonstrated remarkable TC adsorption capability, achieving a removal rate of 96.38 % in 120 min and a qmax of 252.6 mg/g at 298 K by Langmuir model. Kinetic analysis indicated that the interaction between TC and NH2-MIL-101(Cr)@COFs@SA follows a pseudo-second-order model, suggesting that chemisoption governs the process. The Langmuir model and thermodynamic analysis suggested that TC adsorption follows a monolayer sorption pattern and is spontaneous and exothermic. Even in the presence of other ions, NH2-MIL-101(Cr)@COFs@SA maintained high efficiency for TC adsorption, demonstrating superior selectivity. NH2-MIL-101(Cr)@COFs@SA demonstrated remarkable recyclability, with only a minimal reduction in the removal efficiency (85.5 % and 142 mg/g) after 10 cycles of adsorption and regeneration. Various analytical techniques, including FTIR spectroscopy, SEM, EDX, XPS, and density functional theory (DFT) calculations of adsorption energy were used to elucidate the TC adsorption mechanisms by NH2-MIL-101(Cr)@COFs@SA. The adsorption process primarily involved π-π stacking, hydrogen bonding, electrostatic interactions, and complexation.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Polymer
Polymer 化学-高分子科学
CiteScore
7.90
自引率
8.70%
发文量
959
审稿时长
32 days
期刊介绍: Polymer is an interdisciplinary journal dedicated to publishing innovative and significant advances in Polymer Physics, Chemistry and Technology. We welcome submissions on polymer hybrids, nanocomposites, characterisation and self-assembly. Polymer also publishes work on the technological application of polymers in energy and optoelectronics. The main scope is covered but not limited to the following core areas: Polymer Materials Nanocomposites and hybrid nanomaterials Polymer blends, films, fibres, networks and porous materials Physical Characterization Characterisation, modelling and simulation* of molecular and materials properties in bulk, solution, and thin films Polymer Engineering Advanced multiscale processing methods Polymer Synthesis, Modification and Self-assembly Including designer polymer architectures, mechanisms and kinetics, and supramolecular polymerization Technological Applications Polymers for energy generation and storage Polymer membranes for separation technology Polymers for opto- and microelectronics.
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信