Facile and innovation synthesis of Zn-Mn-Co-LDH/polypyrrole and its application in investigating ethanol oxidation in an alkaline medium

IF 4.7 3区 工程技术 Q2 ELECTROCHEMISTRY
Elhameh Saeb , Karim Asadpour-Zeynali , Hossein Dastangoo
{"title":"Facile and innovation synthesis of Zn-Mn-Co-LDH/polypyrrole and its application in investigating ethanol oxidation in an alkaline medium","authors":"Elhameh Saeb ,&nbsp;Karim Asadpour-Zeynali ,&nbsp;Hossein Dastangoo","doi":"10.1016/j.elecom.2024.107809","DOIUrl":null,"url":null,"abstract":"<div><p>Overvoltage and low current are observed for ethanol electrooxidation on the surface of many unmodified electrodes. Therefore, it is desirable to use a suitable catalyst for ethanol electrooxidation to increase the current. This research introduces a new sensor to catalyze ethanol oxidation in an alkaline environment. This new Zn-Mn-Co LDH/PolyPyrrole/GCE nanocomposite sensor exhibits high catalytic activity for ethanol electrooxidation. It changes the oxidation potential of ethanol to a less positive potential. To identify this proposed sensor, X-ray diffraction (XRD), Brauner Emmett-Teller (BET), X-ray photoelectron spectroscopy (XPS), FT-IR spectroscopy, field emission scanning electron microscopy (FESEM), thermal analysis (TGA), high-resolution transmission electron microscopy (HR-TEM) and cyclic voltammetry techniques were used. Ethanol electrooxidation was investigated by cyclic voltammetry technique. The effects of scan rate and ethanol concentration on the ethanol oxidation peak have been investigated. The proposed sensor showed long-term stability. This prepared nanocomposite can be used as an anode catalyst for ethanol fuel cells.</p></div>","PeriodicalId":304,"journal":{"name":"Electrochemistry Communications","volume":"167 ","pages":"Article 107809"},"PeriodicalIF":4.7000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1388248124001528/pdfft?md5=10b6a4972bf9062b9735680a83421d36&pid=1-s2.0-S1388248124001528-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electrochemistry Communications","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1388248124001528","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0

Abstract

Overvoltage and low current are observed for ethanol electrooxidation on the surface of many unmodified electrodes. Therefore, it is desirable to use a suitable catalyst for ethanol electrooxidation to increase the current. This research introduces a new sensor to catalyze ethanol oxidation in an alkaline environment. This new Zn-Mn-Co LDH/PolyPyrrole/GCE nanocomposite sensor exhibits high catalytic activity for ethanol electrooxidation. It changes the oxidation potential of ethanol to a less positive potential. To identify this proposed sensor, X-ray diffraction (XRD), Brauner Emmett-Teller (BET), X-ray photoelectron spectroscopy (XPS), FT-IR spectroscopy, field emission scanning electron microscopy (FESEM), thermal analysis (TGA), high-resolution transmission electron microscopy (HR-TEM) and cyclic voltammetry techniques were used. Ethanol electrooxidation was investigated by cyclic voltammetry technique. The effects of scan rate and ethanol concentration on the ethanol oxidation peak have been investigated. The proposed sensor showed long-term stability. This prepared nanocomposite can be used as an anode catalyst for ethanol fuel cells.

Abstract Image

Zn-Mn-Co-LDH/polypyrrole 的简便创新合成及其在研究碱性介质中乙醇氧化过程中的应用
在许多未经改性的电极表面上,乙醇电氧化会出现电压过高和电流过低的现象。因此,最好使用合适的乙醇电氧化催化剂来增加电流。本研究介绍了一种在碱性环境中催化乙醇氧化的新型传感器。这种新型 Zn-Mn-Co LDH/PolyPyrrole/GCE 纳米复合传感器具有很高的乙醇电氧化催化活性。它能将乙醇的氧化电位变为较低的正电位。为了鉴定这种拟议的传感器,使用了 X 射线衍射 (XRD)、布劳纳-艾美特-泰勒 (BET)、X 射线光电子能谱 (XPS)、傅立叶变换红外光谱、场发射扫描电子显微镜 (FESEM)、热分析 (TGA)、高分辨率透射电子显微镜 (HR-TEM) 和循环伏安技术。乙醇电氧化采用循环伏安技术进行研究。研究了扫描速率和乙醇浓度对乙醇氧化峰的影响。所提出的传感器具有长期稳定性。所制备的纳米复合材料可用作乙醇燃料电池的阳极催化剂。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Electrochemistry Communications
Electrochemistry Communications 工程技术-电化学
CiteScore
8.50
自引率
3.70%
发文量
160
审稿时长
1.2 months
期刊介绍: Electrochemistry Communications is an open access journal providing fast dissemination of short communications, full communications and mini reviews covering the whole field of electrochemistry which merit urgent publication. Short communications are limited to a maximum of 20,000 characters (including spaces) while full communications and mini reviews are limited to 25,000 characters (including spaces). Supplementary information is permitted for full communications and mini reviews but not for short communications. We aim to be the fastest journal in electrochemistry for these types of papers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信