M. Fernanda G.V. Peñaflor, Tiago Morales-Silva, Bruno Henrique Sardinha Souza, Khalid Haddi
{"title":"Expecting the unexpected: Plant-mediated and indirect effects of biopesticides on arthropod pests and their natural enemies","authors":"M. Fernanda G.V. Peñaflor, Tiago Morales-Silva, Bruno Henrique Sardinha Souza, Khalid Haddi","doi":"10.1016/j.coesh.2024.100577","DOIUrl":null,"url":null,"abstract":"<div><p>While direct effects of biopesticides, such as those of plant and microbial origin, on various organisms have been extensively documented, the interactions between biopesticides and plants have been largely neglected. Plant-based (bio) pesticides can include metabolites that signal stress or imminent herbivore attack, activating plant signaling pathways and gene expression involved in antiherbivore defenses. Similarly, entomopathogenic microbes can adopt an endophytic lifestyle, colonizing or being recognized by crop plants and inducing a primed state that makes plants more resistant to subsequent arthropod pest infestations. Besides effects within the biopesticide-treated plants, we predict that biopesticides can influence multitrophic interactions in the agroecosystem due to their interactions between treated and neighboring nontreated plants, as well as indirect effects from volatile organic compounds released by biopesticides on the plant surface, which arthropod pests and their natural enemies use as cues for finding hosts or food resources. Here we review and interpret empirical studies examining plant-mediated effects and indirect effects of biopesticides on arthropod pests and their entomophagous biological control agents in the context of pest management. Unlike synthetic pesticides, most studies indicate conducive effects of biopesticides for pest management, considering the interactions among plants, pests, and natural enemies. However, further efforts to understand plant-mediated and indirect effects of biopes ticides on interactions with natural enemies and plant–plant communication are needed to optimize their use in sustainable pest management strategies.</p></div>","PeriodicalId":52296,"journal":{"name":"Current Opinion in Environmental Science and Health","volume":"42 ","pages":"Article 100577"},"PeriodicalIF":6.7000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Environmental Science and Health","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468584424000473","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
While direct effects of biopesticides, such as those of plant and microbial origin, on various organisms have been extensively documented, the interactions between biopesticides and plants have been largely neglected. Plant-based (bio) pesticides can include metabolites that signal stress or imminent herbivore attack, activating plant signaling pathways and gene expression involved in antiherbivore defenses. Similarly, entomopathogenic microbes can adopt an endophytic lifestyle, colonizing or being recognized by crop plants and inducing a primed state that makes plants more resistant to subsequent arthropod pest infestations. Besides effects within the biopesticide-treated plants, we predict that biopesticides can influence multitrophic interactions in the agroecosystem due to their interactions between treated and neighboring nontreated plants, as well as indirect effects from volatile organic compounds released by biopesticides on the plant surface, which arthropod pests and their natural enemies use as cues for finding hosts or food resources. Here we review and interpret empirical studies examining plant-mediated effects and indirect effects of biopesticides on arthropod pests and their entomophagous biological control agents in the context of pest management. Unlike synthetic pesticides, most studies indicate conducive effects of biopesticides for pest management, considering the interactions among plants, pests, and natural enemies. However, further efforts to understand plant-mediated and indirect effects of biopes ticides on interactions with natural enemies and plant–plant communication are needed to optimize their use in sustainable pest management strategies.