{"title":"Eco-environmental regret-aware optimization of networked multi-energy microgrids with fully carbon elimination and electric vehicles' promotion","authors":"","doi":"10.1016/j.scs.2024.105807","DOIUrl":null,"url":null,"abstract":"<div><p>With the escalating concern of global warming propelled by the rise in Earth's temperature, the need for effective CO<sub>2</sub> management has become crucial. This paper presents an innovative CO<sub>2</sub> elimination approach, wherein a multiple integrated system of energies (MISEs) incorporating sustainable resources, including renewable resources (RENs), plug-in electric vehicles (PEVs), and demand response programs, is optimized. The proposed carbon elimination framework begins by modeling the onsite carbon capturing and recycling within each MISE. To effectively utilize the onsite carbon recycling facilities and achieve carbon neutrality, the proposed model also incorporates carbon transfer capability between MISEs, thereby enhancing the efficiency of overall carbon recycling. Furthermore, a stochastic p-robust optimization technique is proposed to effectively manage uncertainties by combining the advantages of stochastic programming and robust optimization. This uncertainty modeling approach promotes greater utilization of sustainable resources like PEVs and RENs due to their lower operational regrets from economic and environmental perspectives. Based on the simulation results, implementing the p-robust-based regret assessment technique led to the total operation cost increasing by only 2.75 %, while achieving a significant 44.5 % reduction in maximum relative regret. These results underscore the effectiveness of the proposed framework in enhancing both the economic and environmental performance of MISEs.</p></div>","PeriodicalId":48659,"journal":{"name":"Sustainable Cities and Society","volume":null,"pages":null},"PeriodicalIF":10.5000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Cities and Society","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2210670724006310","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
With the escalating concern of global warming propelled by the rise in Earth's temperature, the need for effective CO2 management has become crucial. This paper presents an innovative CO2 elimination approach, wherein a multiple integrated system of energies (MISEs) incorporating sustainable resources, including renewable resources (RENs), plug-in electric vehicles (PEVs), and demand response programs, is optimized. The proposed carbon elimination framework begins by modeling the onsite carbon capturing and recycling within each MISE. To effectively utilize the onsite carbon recycling facilities and achieve carbon neutrality, the proposed model also incorporates carbon transfer capability between MISEs, thereby enhancing the efficiency of overall carbon recycling. Furthermore, a stochastic p-robust optimization technique is proposed to effectively manage uncertainties by combining the advantages of stochastic programming and robust optimization. This uncertainty modeling approach promotes greater utilization of sustainable resources like PEVs and RENs due to their lower operational regrets from economic and environmental perspectives. Based on the simulation results, implementing the p-robust-based regret assessment technique led to the total operation cost increasing by only 2.75 %, while achieving a significant 44.5 % reduction in maximum relative regret. These results underscore the effectiveness of the proposed framework in enhancing both the economic and environmental performance of MISEs.
期刊介绍:
Sustainable Cities and Society (SCS) is an international journal that focuses on fundamental and applied research to promote environmentally sustainable and socially resilient cities. The journal welcomes cross-cutting, multi-disciplinary research in various areas, including:
1. Smart cities and resilient environments;
2. Alternative/clean energy sources, energy distribution, distributed energy generation, and energy demand reduction/management;
3. Monitoring and improving air quality in built environment and cities (e.g., healthy built environment and air quality management);
4. Energy efficient, low/zero carbon, and green buildings/communities;
5. Climate change mitigation and adaptation in urban environments;
6. Green infrastructure and BMPs;
7. Environmental Footprint accounting and management;
8. Urban agriculture and forestry;
9. ICT, smart grid and intelligent infrastructure;
10. Urban design/planning, regulations, legislation, certification, economics, and policy;
11. Social aspects, impacts and resiliency of cities;
12. Behavior monitoring, analysis and change within urban communities;
13. Health monitoring and improvement;
14. Nexus issues related to sustainable cities and societies;
15. Smart city governance;
16. Decision Support Systems for trade-off and uncertainty analysis for improved management of cities and society;
17. Big data, machine learning, and artificial intelligence applications and case studies;
18. Critical infrastructure protection, including security, privacy, forensics, and reliability issues of cyber-physical systems.
19. Water footprint reduction and urban water distribution, harvesting, treatment, reuse and management;
20. Waste reduction and recycling;
21. Wastewater collection, treatment and recycling;
22. Smart, clean and healthy transportation systems and infrastructure;