{"title":"A district-level building electricity use profile simulation model based on probability distribution inferences","authors":"","doi":"10.1016/j.scs.2024.105822","DOIUrl":null,"url":null,"abstract":"<div><p>District-level building energy systems play a significant role in urban energy networks in the future. Understanding the key distributive features of district electricity use profiles is essential for the optimal planning and design of energy networks. Due to the diversity of building electricity use characteristics, the district-level electricity use profile exhibits a prominent “peak staggering effect.” Current physics-based and statistical models cannot fully represent realistic distributions and the uncertainties of district profiles. Thus, it is critical to quantitatively investigate the changing patterns and distributive features of electricity use profiles at various district levels. This paper proposes a novel approach for district building electricity use profile simulation. Probability distribution inference methods integrating Gaussian Mixture Model (GMM)/lognorm distribution fitting, singular value decomposition (SVD)-based feature transformation, and distribution addition theorems have been proposed to generate the feature parameters of electricity use profiles at various district scales, thus generating simulated district electricity use profiles. The performance of the proposed model was validated using engineering-informed metrics, including peak demands, load duration curves, and standard deviations of the load parameters. The results of the case study suggest that the average relative error of the 99 % peak demand is reduced from 17.60 % in the baseline model to 3.48 % in the proposed model, the average relative error of the duration of 2<em>Q<sub>m</sub></em> reduced from 40.82 % in the baseline model to 0.99 % in the proposed model, and the average relative error of the standard deviation of load parameters was reduced from >100 % in the baseline model to <35 % in the proposed model. The results indicate a better quantification of district electricity use distributions and uncertainties, providing practical tools to support the capacity design and optimization of integrated district energy systems.</p></div>","PeriodicalId":48659,"journal":{"name":"Sustainable Cities and Society","volume":null,"pages":null},"PeriodicalIF":10.5000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Cities and Society","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2210670724006462","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
District-level building energy systems play a significant role in urban energy networks in the future. Understanding the key distributive features of district electricity use profiles is essential for the optimal planning and design of energy networks. Due to the diversity of building electricity use characteristics, the district-level electricity use profile exhibits a prominent “peak staggering effect.” Current physics-based and statistical models cannot fully represent realistic distributions and the uncertainties of district profiles. Thus, it is critical to quantitatively investigate the changing patterns and distributive features of electricity use profiles at various district levels. This paper proposes a novel approach for district building electricity use profile simulation. Probability distribution inference methods integrating Gaussian Mixture Model (GMM)/lognorm distribution fitting, singular value decomposition (SVD)-based feature transformation, and distribution addition theorems have been proposed to generate the feature parameters of electricity use profiles at various district scales, thus generating simulated district electricity use profiles. The performance of the proposed model was validated using engineering-informed metrics, including peak demands, load duration curves, and standard deviations of the load parameters. The results of the case study suggest that the average relative error of the 99 % peak demand is reduced from 17.60 % in the baseline model to 3.48 % in the proposed model, the average relative error of the duration of 2Qm reduced from 40.82 % in the baseline model to 0.99 % in the proposed model, and the average relative error of the standard deviation of load parameters was reduced from >100 % in the baseline model to <35 % in the proposed model. The results indicate a better quantification of district electricity use distributions and uncertainties, providing practical tools to support the capacity design and optimization of integrated district energy systems.
期刊介绍:
Sustainable Cities and Society (SCS) is an international journal that focuses on fundamental and applied research to promote environmentally sustainable and socially resilient cities. The journal welcomes cross-cutting, multi-disciplinary research in various areas, including:
1. Smart cities and resilient environments;
2. Alternative/clean energy sources, energy distribution, distributed energy generation, and energy demand reduction/management;
3. Monitoring and improving air quality in built environment and cities (e.g., healthy built environment and air quality management);
4. Energy efficient, low/zero carbon, and green buildings/communities;
5. Climate change mitigation and adaptation in urban environments;
6. Green infrastructure and BMPs;
7. Environmental Footprint accounting and management;
8. Urban agriculture and forestry;
9. ICT, smart grid and intelligent infrastructure;
10. Urban design/planning, regulations, legislation, certification, economics, and policy;
11. Social aspects, impacts and resiliency of cities;
12. Behavior monitoring, analysis and change within urban communities;
13. Health monitoring and improvement;
14. Nexus issues related to sustainable cities and societies;
15. Smart city governance;
16. Decision Support Systems for trade-off and uncertainty analysis for improved management of cities and society;
17. Big data, machine learning, and artificial intelligence applications and case studies;
18. Critical infrastructure protection, including security, privacy, forensics, and reliability issues of cyber-physical systems.
19. Water footprint reduction and urban water distribution, harvesting, treatment, reuse and management;
20. Waste reduction and recycling;
21. Wastewater collection, treatment and recycling;
22. Smart, clean and healthy transportation systems and infrastructure;