Rapid and efficient carbon dioxide capture through benzene-1,4-diamine based hierarchical porous hyper-cross-linked polymers

IF 4.8 3区 材料科学 Q1 CHEMISTRY, APPLIED
{"title":"Rapid and efficient carbon dioxide capture through benzene-1,4-diamine based hierarchical porous hyper-cross-linked polymers","authors":"","doi":"10.1016/j.micromeso.2024.113340","DOIUrl":null,"url":null,"abstract":"<div><p>Carbon dioxide (CO<sub>2</sub>) emission causes global warming which has been the greatest challenge for humanity since last decade. Herein, we developed nitrogen and phosphorus rich hyper cross-linked polymers for CO<sub>2</sub> capture, designated as BDA-HCP-1 and BDA-HCP-2 (benzene-1,4-diamine based hyper cross-linked polymers) having BET surface area 294.5904 m<sup>2</sup>g<sup>-1</sup> and 519.6918 m<sup>2</sup>g<sup>-1</sup> respectively<sup>.</sup> The pore width range of BDA-HCP-1 and BDA-HCP-2 is 0–25 nm and 0–15 nm and pore volume of BDA-HCP-1 and BDA-HCP-2 is 0.01–0.18cm<sup>3</sup>/g and 0.01–0.25 cm<sup>3</sup>/g, respectively.Total pore volume, studied using DFT, is 0.20100 cm<sup>3</sup>/g for BDA-HCP-1 and 0.27973 cm<sup>3</sup>/g for BDA-HCP-2. BJH cumulative pore volume of BDA-HCP-1 is 0.113023 cm<sup>3</sup>/g and BDA-HCP-2 is 0.284733 cm<sup>3</sup>/g. The BDA-HCP-1and BDA-HCP-2 were synthesized by replacement of chlorines of hexachlorocyclophosphazenes (HCCP) and phosphorousdichlorophosphazenes (PDCP) with bezene-1,4-diamine to form linear and cyclic polyphosphazenes, which are later cross-linked through Friedal crafts reaction to form hyper cross-linked polymers. The maximum CO<sub>2</sub> adsorption quantity of BDA-HCP-1 is 48.62 cm<sup>3</sup>/g (CO<sub>2</sub> weight adsorbed 9.070 % with equilibrium time 8.16 min) at 273K/1 bar and 37.96 cm<sup>3</sup>/g (weight adsorbed 7.15 % with equilibrium time 8.25 min) at 298K/1 bar that gives adsorption capacity of 2.14 mmol/g and 1.69 mmol/g, respectively. Adsorption capacity of BDA-HCP-2 is 2.30 mmol/g and 2.13 mmol/g at 273 K/1 bar and 298 K/1 bar respectively. It is calculated from maximum CO<sub>2</sub> adsorption quantity of 51.6 cm<sup>3</sup>/g (weight adsorbed 9.83 % with equilibrium time 11.4 min, at 273 K/1 bar) and 47.7 cm<sup>3</sup>/g (weight adsorbed 9.25 % with equilibrium time 8.45 min, at 298 K/1 bar) respectively. Both BDA-HCPs can be reused with minor loss in adsorption capacity (2 and 1 %), which makes them excellent candidates to use on industrial scale applications. Adsorption isotherm study (Langmuir, Freundlich, and Temkin) and Kinetics study (pseudo first order and pseudo second order) reveals that this study fit best for Freundlich isotherms and pseudo first order kinetic model for both BDA-HCPs. This research contributes valuable insights into the design of hyper cross-linked materials with high surface area, good pore volume, excellent thermal stability and promising gas adsorption capacities particularly for addressing environmental pollution challenges related to CO<sub>2</sub> emissions.</p></div>","PeriodicalId":392,"journal":{"name":"Microporous and Mesoporous Materials","volume":null,"pages":null},"PeriodicalIF":4.8000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microporous and Mesoporous Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1387181124003627","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Carbon dioxide (CO2) emission causes global warming which has been the greatest challenge for humanity since last decade. Herein, we developed nitrogen and phosphorus rich hyper cross-linked polymers for CO2 capture, designated as BDA-HCP-1 and BDA-HCP-2 (benzene-1,4-diamine based hyper cross-linked polymers) having BET surface area 294.5904 m2g-1 and 519.6918 m2g-1 respectively. The pore width range of BDA-HCP-1 and BDA-HCP-2 is 0–25 nm and 0–15 nm and pore volume of BDA-HCP-1 and BDA-HCP-2 is 0.01–0.18cm3/g and 0.01–0.25 cm3/g, respectively.Total pore volume, studied using DFT, is 0.20100 cm3/g for BDA-HCP-1 and 0.27973 cm3/g for BDA-HCP-2. BJH cumulative pore volume of BDA-HCP-1 is 0.113023 cm3/g and BDA-HCP-2 is 0.284733 cm3/g. The BDA-HCP-1and BDA-HCP-2 were synthesized by replacement of chlorines of hexachlorocyclophosphazenes (HCCP) and phosphorousdichlorophosphazenes (PDCP) with bezene-1,4-diamine to form linear and cyclic polyphosphazenes, which are later cross-linked through Friedal crafts reaction to form hyper cross-linked polymers. The maximum CO2 adsorption quantity of BDA-HCP-1 is 48.62 cm3/g (CO2 weight adsorbed 9.070 % with equilibrium time 8.16 min) at 273K/1 bar and 37.96 cm3/g (weight adsorbed 7.15 % with equilibrium time 8.25 min) at 298K/1 bar that gives adsorption capacity of 2.14 mmol/g and 1.69 mmol/g, respectively. Adsorption capacity of BDA-HCP-2 is 2.30 mmol/g and 2.13 mmol/g at 273 K/1 bar and 298 K/1 bar respectively. It is calculated from maximum CO2 adsorption quantity of 51.6 cm3/g (weight adsorbed 9.83 % with equilibrium time 11.4 min, at 273 K/1 bar) and 47.7 cm3/g (weight adsorbed 9.25 % with equilibrium time 8.45 min, at 298 K/1 bar) respectively. Both BDA-HCPs can be reused with minor loss in adsorption capacity (2 and 1 %), which makes them excellent candidates to use on industrial scale applications. Adsorption isotherm study (Langmuir, Freundlich, and Temkin) and Kinetics study (pseudo first order and pseudo second order) reveals that this study fit best for Freundlich isotherms and pseudo first order kinetic model for both BDA-HCPs. This research contributes valuable insights into the design of hyper cross-linked materials with high surface area, good pore volume, excellent thermal stability and promising gas adsorption capacities particularly for addressing environmental pollution challenges related to CO2 emissions.

Abstract Image

通过苯-1,4-二胺基分层多孔超交联聚合物快速高效地捕获二氧化碳
二氧化碳(CO2)排放会导致全球变暖,这已成为近十年来人类面临的最大挑战。在此,我们开发了用于捕获二氧化碳的富氮和磷超交联聚合物,命名为 BDA-HCP-1 和 BDA-HCP-2(苯-1,4-二胺基超交联聚合物),其 BET 表面积分别为 294.5904 m2g-1 和 519.6918 m2g-1。BDA-HCP-1 和 BDA-HCP-2 的孔隙宽度范围分别为 0-25 nm 和 0-15 nm,孔隙体积分别为 0.01-0.18 cm3/g 和 0.01-0.25 cm3/g,使用 DFT 研究的总孔隙体积为 0.20100 cm3/g(BDA-HCP-1)和 0.27973 cm3/g(BDA-HCP-2)。BDA-HCP-1 的 BJH 累计孔隙体积为 0.113023 cm3/g,BDA-HCP-2 为 0.284733 cm3/g。BDA-HCP-1 和 BDA-HCP-2 的合成方法是将六氯环磷氮(HCCP)和磷二氯磷氮(PDCP)的氯置换成苯-1,4-二胺,形成线性和环状聚磷氮,然后通过弗里达尔工艺反应进行交联,形成超交联聚合物。在 273K/1 bar 和 298K/1 bar 条件下,BDA-HCP-1 对二氧化碳的最大吸附量分别为 48.62 立方厘米/克(吸附的二氧化碳重量为 9.070%,平衡时间为 8.16 分钟)和 37.96 立方厘米/克(吸附的二氧化碳重量为 7.15%,平衡时间为 8.25 分钟),吸附容量分别为 2.14 毫摩尔/克和 1.69 毫摩尔/克。在 273 K/1 bar 和 298 K/1 bar 条件下,BDA-HCP-2 的吸附容量分别为 2.30 mmol/g 和 2.13 mmol/g。根据最大二氧化碳吸附量计算得出,在 273 K/1 bar 条件下,最大吸附量为 51.6 cm3/g(吸附重量为 9.83%,平衡时间为 11.4 分钟),在 298 K/1 bar 条件下,最大吸附量为 47.7 cm3/g(吸附重量为 9.25%,平衡时间为 8.45 分钟)。这两种 BDA-HCP 均可重复使用,吸附容量损失较小(分别为 2% 和 1%),因此非常适合在工业规模的应用中使用。吸附等温线研究(Langmuir、Freundlich 和 Temkin)和动力学研究(伪一阶和伪二阶)表明,本研究最适合这两种 BDA-HCP 的 Freundlich 等温线和伪一阶动力学模型。这项研究为设计具有高表面积、良好孔隙率、优异热稳定性和良好气体吸附能力的超交联材料提供了宝贵的见解,特别是在应对与二氧化碳排放有关的环境污染挑战方面。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Microporous and Mesoporous Materials
Microporous and Mesoporous Materials 化学-材料科学:综合
CiteScore
10.70
自引率
5.80%
发文量
649
审稿时长
26 days
期刊介绍: Microporous and Mesoporous Materials covers novel and significant aspects of porous solids classified as either microporous (pore size up to 2 nm) or mesoporous (pore size 2 to 50 nm). The porosity should have a specific impact on the material properties or application. Typical examples are zeolites and zeolite-like materials, pillared materials, clathrasils and clathrates, carbon molecular sieves, ordered mesoporous materials, organic/inorganic porous hybrid materials, or porous metal oxides. Both natural and synthetic porous materials are within the scope of the journal. Topics which are particularly of interest include: All aspects of natural microporous and mesoporous solids The synthesis of crystalline or amorphous porous materials The physico-chemical characterization of microporous and mesoporous solids, especially spectroscopic and microscopic The modification of microporous and mesoporous solids, for example by ion exchange or solid-state reactions All topics related to diffusion of mobile species in the pores of microporous and mesoporous materials Adsorption (and other separation techniques) using microporous or mesoporous adsorbents Catalysis by microporous and mesoporous materials Host/guest interactions Theoretical chemistry and modelling of host/guest interactions All topics related to the application of microporous and mesoporous materials in industrial catalysis, separation technology, environmental protection, electrochemistry, membranes, sensors, optical devices, etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信