Threshold dynamics of a degenerated diffusive incubation period host–pathogen model with saturation incidence rate

IF 2.9 2区 数学 Q1 MATHEMATICS, APPLIED
{"title":"Threshold dynamics of a degenerated diffusive incubation period host–pathogen model with saturation incidence rate","authors":"","doi":"10.1016/j.aml.2024.109312","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we consider an incubation period host–pathogen system with degenerated diffusion. The global compact attractor of the solution of the model is investigated using the <span><math><mi>κ</mi></math></span>-contraction method. Furthermore, the basic reproduction number is defined, and we discuss the dynamic analysis of a degenerated diffusion model. The obtained theoretical results are nontrivial and can be considered a continuation of the work by Wang et al. in 2022.</p></div>","PeriodicalId":55497,"journal":{"name":"Applied Mathematics Letters","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics Letters","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S089396592400332X","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we consider an incubation period host–pathogen system with degenerated diffusion. The global compact attractor of the solution of the model is investigated using the κ-contraction method. Furthermore, the basic reproduction number is defined, and we discuss the dynamic analysis of a degenerated diffusion model. The obtained theoretical results are nontrivial and can be considered a continuation of the work by Wang et al. in 2022.

具有饱和发病率的退化扩散潜伏期宿主-病原体模型的阈值动力学
本文考虑了一个具有退化扩散的潜伏期宿主-病原体系统。利用κ-收缩法研究了该模型解的全局紧凑吸引子。此外,我们还定义了基本繁殖数,并讨论了退化扩散模型的动态分析。所获得的理论结果并不复杂,可以认为是 Wang 等人 2022 年工作的延续。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Mathematics Letters
Applied Mathematics Letters 数学-应用数学
CiteScore
7.70
自引率
5.40%
发文量
347
审稿时长
10 days
期刊介绍: The purpose of Applied Mathematics Letters is to provide a means of rapid publication for important but brief applied mathematical papers. The brief descriptions of any work involving a novel application or utilization of mathematics, or a development in the methodology of applied mathematics is a potential contribution for this journal. This journal''s focus is on applied mathematics topics based on differential equations and linear algebra. Priority will be given to submissions that are likely to appeal to a wide audience.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信