Two-stage spatiotemporal cooperative reentry guidance strategy using transformer and improved beluga whale optimization

IF 5.4 2区 计算机科学 Q1 AUTOMATION & CONTROL SYSTEMS
Xindi Tong , Jia Song , Cheng Xu , Jianglong Yu
{"title":"Two-stage spatiotemporal cooperative reentry guidance strategy using transformer and improved beluga whale optimization","authors":"Xindi Tong ,&nbsp;Jia Song ,&nbsp;Cheng Xu ,&nbsp;Jianglong Yu","doi":"10.1016/j.conengprac.2024.106078","DOIUrl":null,"url":null,"abstract":"<div><p>This research addresses the challenge of insufficient control margin caused by the coupling of multiple constraints in the cooperative precise reentry guidance of hypersonic vehicles. Drawing inspiration from the concept of spatiotemporal decoupling control, a rapid guidance strategy is developed to ensure precise handling of all constraints, including attack time, attack angle, and trajectory constraints. Initially, during the early phase of gliding flight, the adjustment of the heading angle is conceptualized as a single variable root-solving problem, in relation to the entrance width of the lateral azimuth error corridor. Subsequently, a lateral azimuth error corridor with adaptively narrowing entrance width, coupled with a Transformer network-based bank angle predictor, is incorporated to achieve precise fine-tuning of the heading angle under the soft constraint of velocity. In the later phase of gliding flight, the design of a cooperative guidance law under complex multiple constraints is transformed into a nonlinear rapid optimization problem of control commands. An enhanced beluga whale optimization suited to this guidance task is proposed. Finally, numerical simulations are carried out to validate the effectiveness of the proposed strategy under both nominal and uncertain conditions.</p></div>","PeriodicalId":50615,"journal":{"name":"Control Engineering Practice","volume":"153 ","pages":"Article 106078"},"PeriodicalIF":5.4000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Control Engineering Practice","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0967066124002375","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

This research addresses the challenge of insufficient control margin caused by the coupling of multiple constraints in the cooperative precise reentry guidance of hypersonic vehicles. Drawing inspiration from the concept of spatiotemporal decoupling control, a rapid guidance strategy is developed to ensure precise handling of all constraints, including attack time, attack angle, and trajectory constraints. Initially, during the early phase of gliding flight, the adjustment of the heading angle is conceptualized as a single variable root-solving problem, in relation to the entrance width of the lateral azimuth error corridor. Subsequently, a lateral azimuth error corridor with adaptively narrowing entrance width, coupled with a Transformer network-based bank angle predictor, is incorporated to achieve precise fine-tuning of the heading angle under the soft constraint of velocity. In the later phase of gliding flight, the design of a cooperative guidance law under complex multiple constraints is transformed into a nonlinear rapid optimization problem of control commands. An enhanced beluga whale optimization suited to this guidance task is proposed. Finally, numerical simulations are carried out to validate the effectiveness of the proposed strategy under both nominal and uncertain conditions.

利用变压器和改进型白鲸优化的两级时空合作重返大气层制导战略
这项研究解决了高超音速飞行器协同精确再入制导过程中多种约束条件耦合导致控制余量不足的难题。从时空解耦控制概念中汲取灵感,开发了一种快速制导策略,以确保精确处理所有约束条件,包括攻击时间、攻击角和轨迹约束条件。最初,在滑翔飞行的早期阶段,航向角的调整被概念化为与横向方位角误差走廊入口宽度相关的单变量根解问题。随后,将自适应缩小入口宽度的横向方位角误差走廊与基于变压器网络的倾角预测器相结合,在速度软约束条件下实现航向角的精确微调。在滑翔飞行的后期阶段,复杂的多重约束条件下的协同制导法则设计被转化为控制指令的非线性快速优化问题。提出了一种适合该制导任务的白鲸优化增强方法。最后,还进行了数值模拟,以验证所提策略在标称和不确定条件下的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Control Engineering Practice
Control Engineering Practice 工程技术-工程:电子与电气
CiteScore
9.20
自引率
12.20%
发文量
183
审稿时长
44 days
期刊介绍: Control Engineering Practice strives to meet the needs of industrial practitioners and industrially related academics and researchers. It publishes papers which illustrate the direct application of control theory and its supporting tools in all possible areas of automation. As a result, the journal only contains papers which can be considered to have made significant contributions to the application of advanced control techniques. It is normally expected that practical results should be included, but where simulation only studies are available, it is necessary to demonstrate that the simulation model is representative of a genuine application. Strictly theoretical papers will find a more appropriate home in Control Engineering Practice''s sister publication, Automatica. It is also expected that papers are innovative with respect to the state of the art and are sufficiently detailed for a reader to be able to duplicate the main results of the paper (supplementary material, including datasets, tables, code and any relevant interactive material can be made available and downloaded from the website). The benefits of the presented methods must be made very clear and the new techniques must be compared and contrasted with results obtained using existing methods. Moreover, a thorough analysis of failures that may happen in the design process and implementation can also be part of the paper. The scope of Control Engineering Practice matches the activities of IFAC. Papers demonstrating the contribution of automation and control in improving the performance, quality, productivity, sustainability, resource and energy efficiency, and the manageability of systems and processes for the benefit of mankind and are relevant to industrial practitioners are most welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信