{"title":"Study of fretting wear mechanisms of complete contacts","authors":"Haojie Men, Zhiqiang Niu, Wenlong Zhou","doi":"10.1016/j.wear.2024.205577","DOIUrl":null,"url":null,"abstract":"<div><p>The Ti-6Al-4V fretting wear of complete contacts on a proving ring-like rig is investigated in this paper. Under this contact configuration, the Ti-6Al-4V alloy exhibited distinctive fretting wear behaviors. Especially in the continuous wear zones of the fretting specimen and pad, a paired continuous pit and peak were formed, respectively, and moved inward as the continuous wear zones expanded. To explain these fretting wear behaviors of the fretting configuration, a novel phenomenological fretting wear model is proposed in this paper. Additionally, due to the failure of the conventional FE method with a constant wear coefficient to simulate the fretting wear, a new local wear coefficient model, which is position-dependent and time-dependent fretting, is also proposed in this paper.</p></div>","PeriodicalId":23970,"journal":{"name":"Wear","volume":"558 ","pages":"Article 205577"},"PeriodicalIF":5.3000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wear","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0043164824003429","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The Ti-6Al-4V fretting wear of complete contacts on a proving ring-like rig is investigated in this paper. Under this contact configuration, the Ti-6Al-4V alloy exhibited distinctive fretting wear behaviors. Especially in the continuous wear zones of the fretting specimen and pad, a paired continuous pit and peak were formed, respectively, and moved inward as the continuous wear zones expanded. To explain these fretting wear behaviors of the fretting configuration, a novel phenomenological fretting wear model is proposed in this paper. Additionally, due to the failure of the conventional FE method with a constant wear coefficient to simulate the fretting wear, a new local wear coefficient model, which is position-dependent and time-dependent fretting, is also proposed in this paper.
期刊介绍:
Wear journal is dedicated to the advancement of basic and applied knowledge concerning the nature of wear of materials. Broadly, topics of interest range from development of fundamental understanding of the mechanisms of wear to innovative solutions to practical engineering problems. Authors of experimental studies are expected to comment on the repeatability of the data, and whenever possible, conduct multiple measurements under similar testing conditions. Further, Wear embraces the highest standards of professional ethics, and the detection of matching content, either in written or graphical form, from other publications by the current authors or by others, may result in rejection.