V.B. Nalbandyan , M.A. Evstigneeva , R.V. Bazhan , A.N. Vasiliev , A.N. Bulgakov , T.M. Vasilchikova
{"title":"Ionic substitutions in the Cu3TeO6 structure type and magnetic properties of “medium entropy” Cu3/2Mn1/2Co1/2Fe1/2SbO6","authors":"V.B. Nalbandyan , M.A. Evstigneeva , R.V. Bazhan , A.N. Vasiliev , A.N. Bulgakov , T.M. Vasilchikova","doi":"10.1016/j.jssc.2024.125013","DOIUrl":null,"url":null,"abstract":"<div><p>Cubic antiferromagnet Cu<sub>3</sub>TeO<sub>6</sub> demonstrates interesting magnetic properties. Aimed at modification of them, we tried multiple ionic substitutions in its structure. However, single-phase materials could only be prepared with large fraction of the Jahn-Teller ions (Cu<sup>2+</sup> and Mn<sup>3+</sup>), although formally isostructural bixbyites R<sub>2</sub>O<sub>3</sub> (R<sub>4</sub>O<sub>6</sub>) with R = Sc, In, Tl, Sm…Lu exist with no Jahn-Teller ions. Moreover, ions having highest octahedral crystal field stabilization energy (Ni<sup>2+</sup> and Cr<sup>3+</sup>) were found least tolerable. This points to Cu<sub>3</sub>TeO<sub>6</sub> as a separate structure type, distinct from classical bixbyites. We report crystal structure, magnetic and thermodynamic properties of a rare single-phase multicomponent preparation, Cu<sub>3/2</sub>Mn<sub>1/2</sub>Co<sub>1/2</sub>Fe<sub>1/2</sub>SbO<sub>6</sub>. The <em>dc</em> magnetic studies show that the formation of the ground spin-cluster state at <em>T</em> = 18 K is preceded by a broad anomaly at ∼122 K. Both specific heat and <em>ac</em> susceptibility data rule out the long-range magnetic ordering, in contrast to closely related Cu<sub>2</sub>MSbO<sub>6</sub> (M = Mn or Fe).</p></div>","PeriodicalId":378,"journal":{"name":"Journal of Solid State Chemistry","volume":"340 ","pages":"Article 125013"},"PeriodicalIF":3.2000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Solid State Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022459624004675","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0
Abstract
Cubic antiferromagnet Cu3TeO6 demonstrates interesting magnetic properties. Aimed at modification of them, we tried multiple ionic substitutions in its structure. However, single-phase materials could only be prepared with large fraction of the Jahn-Teller ions (Cu2+ and Mn3+), although formally isostructural bixbyites R2O3 (R4O6) with R = Sc, In, Tl, Sm…Lu exist with no Jahn-Teller ions. Moreover, ions having highest octahedral crystal field stabilization energy (Ni2+ and Cr3+) were found least tolerable. This points to Cu3TeO6 as a separate structure type, distinct from classical bixbyites. We report crystal structure, magnetic and thermodynamic properties of a rare single-phase multicomponent preparation, Cu3/2Mn1/2Co1/2Fe1/2SbO6. The dc magnetic studies show that the formation of the ground spin-cluster state at T = 18 K is preceded by a broad anomaly at ∼122 K. Both specific heat and ac susceptibility data rule out the long-range magnetic ordering, in contrast to closely related Cu2MSbO6 (M = Mn or Fe).
期刊介绍:
Covering major developments in the field of solid state chemistry and related areas such as ceramics and amorphous materials, the Journal of Solid State Chemistry features studies of chemical, structural, thermodynamic, electronic, magnetic, and optical properties and processes in solids.