On the proportion of metric matroids whose Jacobians have nontrivial p-torsion

IF 0.9 2区 数学 Q2 MATHEMATICS
Sergio Ricardo Zapata Ceballos
{"title":"On the proportion of metric matroids whose Jacobians have nontrivial p-torsion","authors":"Sergio Ricardo Zapata Ceballos","doi":"10.1016/j.jcta.2024.105953","DOIUrl":null,"url":null,"abstract":"<div><p>We study the proportion of metric matroids whose Jacobians have nontrivial <em>p</em>-torsion. We establish a correspondence between these Jacobians and the <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span>-rational points on configuration hypersurfaces, thereby relating their proportions. By counting points over finite fields, we prove that the proportion of these Jacobians is asymptotically equivalent to <span><math><mn>1</mn><mo>/</mo><mi>p</mi></math></span>.</p></div>","PeriodicalId":50230,"journal":{"name":"Journal of Combinatorial Theory Series A","volume":"210 ","pages":"Article 105953"},"PeriodicalIF":0.9000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S009731652400092X/pdfft?md5=d8e2893424d34795a1338a7aa80035a5&pid=1-s2.0-S009731652400092X-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Theory Series A","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S009731652400092X","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We study the proportion of metric matroids whose Jacobians have nontrivial p-torsion. We establish a correspondence between these Jacobians and the Fp-rational points on configuration hypersurfaces, thereby relating their proportions. By counting points over finite fields, we prove that the proportion of these Jacobians is asymptotically equivalent to 1/p.

关于雅各布有非三角 p 扭转的公因子矩阵的比例
我们研究了雅各布具有非难 p 扭转的度量矩阵的比例。我们在这些雅各布与配置超曲面上的 Fp 有理点之间建立了对应关系,从而将它们的比例联系起来。通过计算有限域上的点,我们证明这些雅各布的比例在渐近上等同于 1/p。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.90
自引率
9.10%
发文量
94
审稿时长
12 months
期刊介绍: The Journal of Combinatorial Theory publishes original mathematical research concerned with theoretical and physical aspects of the study of finite and discrete structures in all branches of science. Series A is concerned primarily with structures, designs, and applications of combinatorics and is a valuable tool for mathematicians and computer scientists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信