Guilian Zou , Qi Chen , Youqing Jiao , Yan Yuan , Yuan Zhang , Jiangmiao Yu
{"title":"Research on deicing performance of high-elastic/salt-storage asphalt mixture containing rubber particle and self-developed salt-storage filler","authors":"Guilian Zou , Qi Chen , Youqing Jiao , Yan Yuan , Yuan Zhang , Jiangmiao Yu","doi":"10.1016/j.conbuildmat.2024.138303","DOIUrl":null,"url":null,"abstract":"<div><p>Snow and ice on the pavement surfaces in winter seriously threaten the traffic safety. This study prepared high-elastic/salt-storage (HESS) asphalt mixtures containing rubber particles (RP) and self-developed salt-storage fillers to improve deicing performance in various aspects. Specifically, the RP was incorporated into the asphalt mixture by replacing 1 %, 2 %, and 3 % of fine aggregate by mass and the self-developed salt-storage filler was incorporated into the asphalt mixture to replace 25 %, 50 %, and 75 % of the mineral filler by equal volume. Hydrated lime was used as a mineral filler to enhance the asphalt mixtures’ water damage resistance. The pavement performance of HESS asphalt mixtures was first studied. The pull-out and fall ball impact tests were designed to investigate the composite deicing effect of RP and salt-storage filler on the asphalt mixtures. A self-designed rainfall simulation test was used to assess the long-term deicing performance of HESS asphalt mixtures. Results showed that the incorporation of RP improves the high-temperature stability and low-temperature crack resistance of the mixtures, but negatively affects their water damage resistance. The RP content should not exceed 3 % to guarantee water damage resistance. Due to combining effects RP and salt-storage fillers, the deicing performance of HESS asphalt mixtures has been improved by 15.9 % and 10.6 % as compared to the addition of RP and salt-storage fillers separately. It is recommended to replace the fine aggregates with the RP at content of 1.5–3 % by mass and 60–75 % mineral filler with the salt-storage filler by volume.</p></div>","PeriodicalId":288,"journal":{"name":"Construction and Building Materials","volume":"449 ","pages":"Article 138303"},"PeriodicalIF":7.4000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Construction and Building Materials","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0950061824034457","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Snow and ice on the pavement surfaces in winter seriously threaten the traffic safety. This study prepared high-elastic/salt-storage (HESS) asphalt mixtures containing rubber particles (RP) and self-developed salt-storage fillers to improve deicing performance in various aspects. Specifically, the RP was incorporated into the asphalt mixture by replacing 1 %, 2 %, and 3 % of fine aggregate by mass and the self-developed salt-storage filler was incorporated into the asphalt mixture to replace 25 %, 50 %, and 75 % of the mineral filler by equal volume. Hydrated lime was used as a mineral filler to enhance the asphalt mixtures’ water damage resistance. The pavement performance of HESS asphalt mixtures was first studied. The pull-out and fall ball impact tests were designed to investigate the composite deicing effect of RP and salt-storage filler on the asphalt mixtures. A self-designed rainfall simulation test was used to assess the long-term deicing performance of HESS asphalt mixtures. Results showed that the incorporation of RP improves the high-temperature stability and low-temperature crack resistance of the mixtures, but negatively affects their water damage resistance. The RP content should not exceed 3 % to guarantee water damage resistance. Due to combining effects RP and salt-storage fillers, the deicing performance of HESS asphalt mixtures has been improved by 15.9 % and 10.6 % as compared to the addition of RP and salt-storage fillers separately. It is recommended to replace the fine aggregates with the RP at content of 1.5–3 % by mass and 60–75 % mineral filler with the salt-storage filler by volume.
期刊介绍:
Construction and Building Materials offers an international platform for sharing innovative and original research and development in the realm of construction and building materials, along with their practical applications in new projects and repair practices. The journal publishes a diverse array of pioneering research and application papers, detailing laboratory investigations and, to a limited extent, numerical analyses or reports on full-scale projects. Multi-part papers are discouraged.
Additionally, Construction and Building Materials features comprehensive case studies and insightful review articles that contribute to new insights in the field. Our focus is on papers related to construction materials, excluding those on structural engineering, geotechnics, and unbound highway layers. Covered materials and technologies encompass cement, concrete reinforcement, bricks and mortars, additives, corrosion technology, ceramics, timber, steel, polymers, glass fibers, recycled materials, bamboo, rammed earth, non-conventional building materials, bituminous materials, and applications in railway materials.