Particle swarm optimization based on data driven for EV charging station siting

IF 9 1区 工程技术 Q1 ENERGY & FUELS
{"title":"Particle swarm optimization based on data driven for EV charging station siting","authors":"","doi":"10.1016/j.energy.2024.133197","DOIUrl":null,"url":null,"abstract":"<div><p>Charging stations are an important support facility for electric vehicles (EVs). Nowadays, the EV industry is developing rapidly, however, the imperfect construction of charging stations or the unreasonable choice of location has seriously reduced the desire of people to buy EVs and led to the problem of difficult charging of EVs in many areas. At present, the research field of EV charging station siting suffers from the inability to quickly and accurately calculate the optimal solution for charging station siting. In this regard, a particle swarm optimization based on deep neural networks modified boundaries (DNNMBPSO) is proposed for solving the problem. DNNMBPSO reduces the convergence value of the objective function by applying deep learning to modify the boundary of the particle swarm optimization. DNNMBPSO is an algorithm that combines heuristic and data driven. In this study, DNNMBPSO is applied for siting study in a system having 50 alternative points, 500 alternative points, and 1000 alternative points and a case of siting of electric vehicle charging stations in Nanning, Guangxi, China. The convergence value of the DNNMBPSO-based objective function is found to be at least 5.5 %, 1.7 %, 8.23 % and 14.7 %, lower compared to genetic algorithms, African vulture optimization algorithm, particle swarm optimization, and grey wolf optimization algorithms, respectively. Traditional heuristic optimization algorithms cannot find optimal solutions in large-scale systems, while DNNMBPSO shows feasibility in large-scale systems.</p></div>","PeriodicalId":11647,"journal":{"name":"Energy","volume":null,"pages":null},"PeriodicalIF":9.0000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0360544224029724","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Charging stations are an important support facility for electric vehicles (EVs). Nowadays, the EV industry is developing rapidly, however, the imperfect construction of charging stations or the unreasonable choice of location has seriously reduced the desire of people to buy EVs and led to the problem of difficult charging of EVs in many areas. At present, the research field of EV charging station siting suffers from the inability to quickly and accurately calculate the optimal solution for charging station siting. In this regard, a particle swarm optimization based on deep neural networks modified boundaries (DNNMBPSO) is proposed for solving the problem. DNNMBPSO reduces the convergence value of the objective function by applying deep learning to modify the boundary of the particle swarm optimization. DNNMBPSO is an algorithm that combines heuristic and data driven. In this study, DNNMBPSO is applied for siting study in a system having 50 alternative points, 500 alternative points, and 1000 alternative points and a case of siting of electric vehicle charging stations in Nanning, Guangxi, China. The convergence value of the DNNMBPSO-based objective function is found to be at least 5.5 %, 1.7 %, 8.23 % and 14.7 %, lower compared to genetic algorithms, African vulture optimization algorithm, particle swarm optimization, and grey wolf optimization algorithms, respectively. Traditional heuristic optimization algorithms cannot find optimal solutions in large-scale systems, while DNNMBPSO shows feasibility in large-scale systems.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Energy
Energy 工程技术-能源与燃料
CiteScore
15.30
自引率
14.40%
发文量
0
审稿时长
14.2 weeks
期刊介绍: Energy is a multidisciplinary, international journal that publishes research and analysis in the field of energy engineering. Our aim is to become a leading peer-reviewed platform and a trusted source of information for energy-related topics. The journal covers a range of areas including mechanical engineering, thermal sciences, and energy analysis. We are particularly interested in research on energy modelling, prediction, integrated energy systems, planning, and management. Additionally, we welcome papers on energy conservation, efficiency, biomass and bioenergy, renewable energy, electricity supply and demand, energy storage, buildings, and economic and policy issues. These topics should align with our broader multidisciplinary focus.
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信