An exponential variation based PSO for analog circuit sizing in constrained environment

IF 3 3区 计算机科学 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Shreeharsha K.G. , Siddharth R.K. , Charudatta G Korde , Vasantha M.H. , Nithin Kumar Y.B.
{"title":"An exponential variation based PSO for analog circuit sizing in constrained environment","authors":"Shreeharsha K.G. ,&nbsp;Siddharth R.K. ,&nbsp;Charudatta G Korde ,&nbsp;Vasantha M.H. ,&nbsp;Nithin Kumar Y.B.","doi":"10.1016/j.aeue.2024.155531","DOIUrl":null,"url":null,"abstract":"<div><p>This work presents an Exponential Variation based Particle Swarm Optimization (EV-PSO) algorithm to improve the convergence rate and find an optimal solution to analog circuit optimization problems in a constrained-driven environment. Existing evolutionary algorithms have a lower convergence rate leading to higher design time. This work introduces two novel parameters, <span><math><msub><mrow><mi>ζ</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> and <span><math><msub><mrow><mi>ζ</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>, into the velocity update equation. These parameters dynamically vary with the number of iterations. The algorithm was implemented on the Python platform. The results have shown that, in comparison to the considered existing methods, the exponential variation of the parameters <span><math><msub><mrow><mi>ζ</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> and <span><math><msub><mrow><mi>ζ</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> in the proposed algorithms have a larger rate of convergence. The proposed EV-PSO has a convergence rate of 27 iterations, which is 57.8%, 65.38%, and 59.1% better than the conventional PSO, differential evolution (DE) and genetic algorithm (GA) respectively. The typical design obtained from the optimal solution is verified through the simulation using 45-nm CMOS technology. The optimal solution presented in this work meets the desired input specifications within the specified constrained environment.</p></div>","PeriodicalId":50844,"journal":{"name":"Aeu-International Journal of Electronics and Communications","volume":"187 ","pages":"Article 155531"},"PeriodicalIF":3.0000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1434841124004175/pdfft?md5=ae96eacee54d840f33a6601669a1c3f4&pid=1-s2.0-S1434841124004175-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aeu-International Journal of Electronics and Communications","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1434841124004175","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

This work presents an Exponential Variation based Particle Swarm Optimization (EV-PSO) algorithm to improve the convergence rate and find an optimal solution to analog circuit optimization problems in a constrained-driven environment. Existing evolutionary algorithms have a lower convergence rate leading to higher design time. This work introduces two novel parameters, ζ1 and ζ2, into the velocity update equation. These parameters dynamically vary with the number of iterations. The algorithm was implemented on the Python platform. The results have shown that, in comparison to the considered existing methods, the exponential variation of the parameters ζ1 and ζ2 in the proposed algorithms have a larger rate of convergence. The proposed EV-PSO has a convergence rate of 27 iterations, which is 57.8%, 65.38%, and 59.1% better than the conventional PSO, differential evolution (DE) and genetic algorithm (GA) respectively. The typical design obtained from the optimal solution is verified through the simulation using 45-nm CMOS technology. The optimal solution presented in this work meets the desired input specifications within the specified constrained environment.

Abstract Image

基于指数变化的 PSO,适用于受限环境中的模拟电路选型
本研究提出了一种基于指数变异的粒子群优化算法(EV-PSO),以提高收敛速度,并在约束驱动环境中找到模拟电路优化问题的最佳解决方案。现有的进化算法收敛速度较低,导致设计时间较长。这项研究在速度更新方程中引入了两个新参数:ζ1 和 ζ2。这些参数随迭代次数动态变化。该算法在 Python 平台上实现。结果表明,与现有方法相比,拟议算法中参数ζ1 和ζ2 的指数变化具有更大的收敛速度。所提出的 EV-PSO 的收敛速率为 27 次迭代,分别比传统 PSO、微分进化(DE)和遗传算法(GA)好 57.8%、65.38% 和 59.1%。通过使用 45 纳米 CMOS 技术进行仿真,验证了从最优解中获得的典型设计。这项工作中提出的最优解在指定的受限环境中满足了所需的输入规格。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.90
自引率
18.80%
发文量
292
审稿时长
4.9 months
期刊介绍: AEÜ is an international scientific journal which publishes both original works and invited tutorials. The journal''s scope covers all aspects of theory and design of circuits, systems and devices for electronics, signal processing, and communication, including: signal and system theory, digital signal processing network theory and circuit design information theory, communication theory and techniques, modulation, source and channel coding switching theory and techniques, communication protocols optical communications microwave theory and techniques, radar, sonar antennas, wave propagation AEÜ publishes full papers and letters with very short turn around time but a high standard review process. Review cycles are typically finished within twelve weeks by application of modern electronic communication facilities.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信