{"title":"Spatial patterns of damage and tree mortality in a selectively logged Atlantic Forest","authors":"","doi":"10.1016/j.foreco.2024.122294","DOIUrl":null,"url":null,"abstract":"<div><p>Selective logging, a common disturbance in mixed-species and uneven-aged forests, can cause substantial collateral stand damage and tree mortality. Here we explore damage patterns and some mechanisms that increase post-harvest tree mortality in a selectively logged subtropical Atlantic Forest in Argentina. We investigate the spatial relations of felled and damaged trees through spatial point pattern analysis and evaluate the relationships between mortality and different endogenous (size - diameter at breast height: DBH; and wood density: WD) and exogenous (damage and neighboring basal area: NBA) factors. The permanent plots were logged in 1999, and the fates of all pre-logging live trees ≥10 cm DBH were evaluated 20 years later. Of the monitored 3973 trees, 381 with damaged concentrated within 10.5 m of felled tree stumps. Over the next twenty years mean mortality was higher and more variable for damaged than undamaged trees (47 % ± 10 % SE and 39 % ± 2 % SE, respectively), and the presence of damage interacted with the other analyzed factors. For undamaged trees, the probability of mortality declined with DBH and NBA but not with WD. For damaged trees, instead, the probability of mortality was related to an interaction between DBH, WD, and NBA. For damaged trees <30 cm DBH, mortality increased with WD and NBA, whereas for damaged trees ≥30 cm DBH, mortality peaked at both extremes of the WD range. For these large trees with low WD, the probability of mortality decreased with NBA, whereas for trees with high WD, the opposite was observed. Our findings suggest that selective logging affects the dynamics of forests by spatially concentrating damage and may alter subsequent tree deaths. This could have, long-term effects on forest structure. Increases in logging intensity would increase overall damage and spatially isolate trees (i.e., lower NBA), rendering them more vulnerable to wind damage and other external factors. Increased tree mortality will reduce forest carbon stocks and thereby jeopardize global efforts to mitigate climate change.</p></div>","PeriodicalId":12350,"journal":{"name":"Forest Ecology and Management","volume":null,"pages":null},"PeriodicalIF":3.7000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forest Ecology and Management","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378112724006066","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FORESTRY","Score":null,"Total":0}
引用次数: 0
Abstract
Selective logging, a common disturbance in mixed-species and uneven-aged forests, can cause substantial collateral stand damage and tree mortality. Here we explore damage patterns and some mechanisms that increase post-harvest tree mortality in a selectively logged subtropical Atlantic Forest in Argentina. We investigate the spatial relations of felled and damaged trees through spatial point pattern analysis and evaluate the relationships between mortality and different endogenous (size - diameter at breast height: DBH; and wood density: WD) and exogenous (damage and neighboring basal area: NBA) factors. The permanent plots were logged in 1999, and the fates of all pre-logging live trees ≥10 cm DBH were evaluated 20 years later. Of the monitored 3973 trees, 381 with damaged concentrated within 10.5 m of felled tree stumps. Over the next twenty years mean mortality was higher and more variable for damaged than undamaged trees (47 % ± 10 % SE and 39 % ± 2 % SE, respectively), and the presence of damage interacted with the other analyzed factors. For undamaged trees, the probability of mortality declined with DBH and NBA but not with WD. For damaged trees, instead, the probability of mortality was related to an interaction between DBH, WD, and NBA. For damaged trees <30 cm DBH, mortality increased with WD and NBA, whereas for damaged trees ≥30 cm DBH, mortality peaked at both extremes of the WD range. For these large trees with low WD, the probability of mortality decreased with NBA, whereas for trees with high WD, the opposite was observed. Our findings suggest that selective logging affects the dynamics of forests by spatially concentrating damage and may alter subsequent tree deaths. This could have, long-term effects on forest structure. Increases in logging intensity would increase overall damage and spatially isolate trees (i.e., lower NBA), rendering them more vulnerable to wind damage and other external factors. Increased tree mortality will reduce forest carbon stocks and thereby jeopardize global efforts to mitigate climate change.
期刊介绍:
Forest Ecology and Management publishes scientific articles linking forest ecology with forest management, focusing on the application of biological, ecological and social knowledge to the management and conservation of plantations and natural forests. The scope of the journal includes all forest ecosystems of the world.
A peer-review process ensures the quality and international interest of the manuscripts accepted for publication. The journal encourages communication between scientists in disparate fields who share a common interest in ecology and forest management, bridging the gap between research workers and forest managers.
We encourage submission of papers that will have the strongest interest and value to the Journal''s international readership. Some key features of papers with strong interest include:
1. Clear connections between the ecology and management of forests;
2. Novel ideas or approaches to important challenges in forest ecology and management;
3. Studies that address a population of interest beyond the scale of single research sites, Three key points in the design of forest experiments, Forest Ecology and Management 255 (2008) 2022-2023);
4. Review Articles on timely, important topics. Authors are welcome to contact one of the editors to discuss the suitability of a potential review manuscript.
The Journal encourages proposals for special issues examining important areas of forest ecology and management. Potential guest editors should contact any of the Editors to begin discussions about topics, potential papers, and other details.