Qingjie Liu , Wenrui Liu , Tong Li , Yingquan Ao , Shaolin Ke
{"title":"Nonreciprocal conversion based on line trajectory near exceptional points","authors":"Qingjie Liu , Wenrui Liu , Tong Li , Yingquan Ao , Shaolin Ke","doi":"10.1016/j.rinp.2024.107959","DOIUrl":null,"url":null,"abstract":"<div><p>Spatio-temporal permittivity modulation can simultaneously impart wave vector and frequency shifts during an indirect photonic transition process where nonreciprocal responses are accomplished. Here, we combine the nonreciprocity with exceptional points (EPs) by employing line parameter trajectory to a spatio-temporally modulated waveguide. The instantaneous state evolutions on direction-dependent Riemann sheets are thus different in forward and backward directions. Light propagates through the structure is nonreciprocal. Forwardly, an arbitrary incident wave will convert to a combination of the two waveguide modes with same intensity. Backwardly, the waves almost entirely convert to one specific mode. The conversion efficiency is more than 80% and robust to the line design. The operating wavelength is in the telecommunications band, conducive to integration with other chips. Compared to the widely used loop path, the line path has the merit of easy preparation in experiments as only one parameter is changed. The research sheds light on the optical devices such as isolator and amplifier.</p></div>","PeriodicalId":21042,"journal":{"name":"Results in Physics","volume":"65 ","pages":"Article 107959"},"PeriodicalIF":4.4000,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2211379724006442/pdfft?md5=89eca6bc7178024140e185698d6540d7&pid=1-s2.0-S2211379724006442-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2211379724006442","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Spatio-temporal permittivity modulation can simultaneously impart wave vector and frequency shifts during an indirect photonic transition process where nonreciprocal responses are accomplished. Here, we combine the nonreciprocity with exceptional points (EPs) by employing line parameter trajectory to a spatio-temporally modulated waveguide. The instantaneous state evolutions on direction-dependent Riemann sheets are thus different in forward and backward directions. Light propagates through the structure is nonreciprocal. Forwardly, an arbitrary incident wave will convert to a combination of the two waveguide modes with same intensity. Backwardly, the waves almost entirely convert to one specific mode. The conversion efficiency is more than 80% and robust to the line design. The operating wavelength is in the telecommunications band, conducive to integration with other chips. Compared to the widely used loop path, the line path has the merit of easy preparation in experiments as only one parameter is changed. The research sheds light on the optical devices such as isolator and amplifier.
Results in PhysicsMATERIALS SCIENCE, MULTIDISCIPLINARYPHYSIC-PHYSICS, MULTIDISCIPLINARY
CiteScore
8.70
自引率
9.40%
发文量
754
审稿时长
50 days
期刊介绍:
Results in Physics is an open access journal offering authors the opportunity to publish in all fundamental and interdisciplinary areas of physics, materials science, and applied physics. Papers of a theoretical, computational, and experimental nature are all welcome. Results in Physics accepts papers that are scientifically sound, technically correct and provide valuable new knowledge to the physics community. Topics such as three-dimensional flow and magnetohydrodynamics are not within the scope of Results in Physics.
Results in Physics welcomes three types of papers:
1. Full research papers
2. Microarticles: very short papers, no longer than two pages. They may consist of a single, but well-described piece of information, such as:
- Data and/or a plot plus a description
- Description of a new method or instrumentation
- Negative results
- Concept or design study
3. Letters to the Editor: Letters discussing a recent article published in Results in Physics are welcome. These are objective, constructive, or educational critiques of papers published in Results in Physics. Accepted letters will be sent to the author of the original paper for a response. Each letter and response is published together. Letters should be received within 8 weeks of the article''s publication. They should not exceed 750 words of text and 10 references.