Symmetric engineered central cross-shaped broadband metamaterial absorber with high absorption and stability for solar sailing and solar energy applications
Mahamudur Rahman , Md Mohiuddin Soliman , Mohammad Tariqul Islam , Touhidul Alam , Ahmed S. Alshammari , Mohamed S. Soliman
{"title":"Symmetric engineered central cross-shaped broadband metamaterial absorber with high absorption and stability for solar sailing and solar energy applications","authors":"Mahamudur Rahman , Md Mohiuddin Soliman , Mohammad Tariqul Islam , Touhidul Alam , Ahmed S. Alshammari , Mohamed S. Soliman","doi":"10.1016/j.surfin.2024.105077","DOIUrl":null,"url":null,"abstract":"<div><p>We propose a theoretical design and analysis of a broadband metamaterial absorber (MMA) with significant potential for solar sailing applications which is a method of spacecraft propulsion that usages the momentum of sunlight to propel a spacecraft through space. The absorber features a metal-dielectric-metal configuration with a tungsten (W) based resonator and ground plane, and a Silicon-dioxide (SiO₂) substrate. Addressing the critical need for materials that can efficiently harness solar radiation for propulsion in space, our design achieves an average absorption of 99.15 % over a broad spectrum from 250 nm to 1200 nm, covering the UV–Visible–NIR regions, with near-unity absorption peaks at 362 nm and 915.8 nm. It maintains high absorptions of 84.9 % and 86 % under transvers electric and transvers magnetic modes respectively, demonstrating excellent wide incident angle stability and polarization insensitivity due to its symmetric design. PCR values close to zero confirm its functionality as an absorber rather than a polarizer. The MMA shows minimal deformation across temperatures from 500 K to 1750 K and remains stable under various mechanical stresses, proving its durability and efficiency in space. Additionally, in solar thermophotovoltaic (STPV) systems, the MMA demonstrates high photothermal conversion efficiency (PTCE) over a wide temperature range (500 °C to 1500 °C) and different concentration factors. This dual functionality highlights its potential for both efficient space exploration and terrestrial solar energy harvesting, making it a versatile tool for future technological applications.</p></div>","PeriodicalId":22081,"journal":{"name":"Surfaces and Interfaces","volume":"54 ","pages":"Article 105077"},"PeriodicalIF":5.7000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Surfaces and Interfaces","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468023024012331","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
We propose a theoretical design and analysis of a broadband metamaterial absorber (MMA) with significant potential for solar sailing applications which is a method of spacecraft propulsion that usages the momentum of sunlight to propel a spacecraft through space. The absorber features a metal-dielectric-metal configuration with a tungsten (W) based resonator and ground plane, and a Silicon-dioxide (SiO₂) substrate. Addressing the critical need for materials that can efficiently harness solar radiation for propulsion in space, our design achieves an average absorption of 99.15 % over a broad spectrum from 250 nm to 1200 nm, covering the UV–Visible–NIR regions, with near-unity absorption peaks at 362 nm and 915.8 nm. It maintains high absorptions of 84.9 % and 86 % under transvers electric and transvers magnetic modes respectively, demonstrating excellent wide incident angle stability and polarization insensitivity due to its symmetric design. PCR values close to zero confirm its functionality as an absorber rather than a polarizer. The MMA shows minimal deformation across temperatures from 500 K to 1750 K and remains stable under various mechanical stresses, proving its durability and efficiency in space. Additionally, in solar thermophotovoltaic (STPV) systems, the MMA demonstrates high photothermal conversion efficiency (PTCE) over a wide temperature range (500 °C to 1500 °C) and different concentration factors. This dual functionality highlights its potential for both efficient space exploration and terrestrial solar energy harvesting, making it a versatile tool for future technological applications.
期刊介绍:
The aim of the journal is to provide a respectful outlet for ''sound science'' papers in all research areas on surfaces and interfaces. We define sound science papers as papers that describe new and well-executed research, but that do not necessarily provide brand new insights or are merely a description of research results.
Surfaces and Interfaces publishes research papers in all fields of surface science which may not always find the right home on first submission to our Elsevier sister journals (Applied Surface, Surface and Coatings Technology, Thin Solid Films)