Impacts of the East Asia monsoon on the PM2.5 acidity in Hanoi

IF 3.9 3区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES
{"title":"Impacts of the East Asia monsoon on the PM2.5 acidity in Hanoi","authors":"","doi":"10.1016/j.apr.2024.102304","DOIUrl":null,"url":null,"abstract":"<div><p>This study investigates the acidity of particulate matter with an aerodynamic diameter less than 2.5 μm (PM<sub>2.5</sub>) in Hanoi, the capital city of Vietnam, and its influencing factors by analyzing measured concentrations of water-soluble inorganic ions (WSIIs) in 107 24-h samples collected between June 2021 and February 2022. The average sulfate, nitrate, and ammonium concentrations were 5.79, 3.55, and 5.46 μg m<sup>−3</sup>, respectively. Among the samples, 83 exhibited alkaline aerosols characterized by elevated ammonium-to-sulfate molar concentration ratios (ASMCR) ranging from 2.3 to 9.6, while 24 showed acidic characteristics with ASMCR ranging from 0.5 to 2.5. By employing the Extended Aerosol Inorganic Model E-AIM III, with major WSIIs as the input parameters, the estimated aerosol acidity pH ranged from 8.6 to 10.9 for alkaline aerosols and below 4.5 for acidic aerosols. These variations in ASMCR and aerosol pH highlight the distinct acidic and alkaline aerosol source regions affecting Hanoi's PM<sub>2.5</sub> by the monsoon air masses. The Potential Source Contribution Function (PSCF) maps of NH<sub>4</sub><sup>+</sup> and SO<sub>4</sub><sup>2−</sup> revealed the Northeast and Southeast monsoon upwind sources of acidic aerosols over China's Guangdong coastal region and Vietnam's offshore, respectively. Alkaline aerosols were observed during the Northeast and Southwest monsoons, with upwind sources originating in South China, Thailand, and Cambodia. The emergence of the ammonium-rich source areas in South China may be attributed to China's sustained emission control measures, targeting acidic SO<sub>2</sub> and NO<sub>x</sub> emissions while leaving alkaline NH<sub>3</sub> emissions largely unaffected. This research provided insights into the intricate relationships between regional emissions, long-range transport, and local meteorological-driven emissions, offering valuable guidance for effective air quality management in urban environments.</p></div>","PeriodicalId":8604,"journal":{"name":"Atmospheric Pollution Research","volume":null,"pages":null},"PeriodicalIF":3.9000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atmospheric Pollution Research","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1309104224002691","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

This study investigates the acidity of particulate matter with an aerodynamic diameter less than 2.5 μm (PM2.5) in Hanoi, the capital city of Vietnam, and its influencing factors by analyzing measured concentrations of water-soluble inorganic ions (WSIIs) in 107 24-h samples collected between June 2021 and February 2022. The average sulfate, nitrate, and ammonium concentrations were 5.79, 3.55, and 5.46 μg m−3, respectively. Among the samples, 83 exhibited alkaline aerosols characterized by elevated ammonium-to-sulfate molar concentration ratios (ASMCR) ranging from 2.3 to 9.6, while 24 showed acidic characteristics with ASMCR ranging from 0.5 to 2.5. By employing the Extended Aerosol Inorganic Model E-AIM III, with major WSIIs as the input parameters, the estimated aerosol acidity pH ranged from 8.6 to 10.9 for alkaline aerosols and below 4.5 for acidic aerosols. These variations in ASMCR and aerosol pH highlight the distinct acidic and alkaline aerosol source regions affecting Hanoi's PM2.5 by the monsoon air masses. The Potential Source Contribution Function (PSCF) maps of NH4+ and SO42− revealed the Northeast and Southeast monsoon upwind sources of acidic aerosols over China's Guangdong coastal region and Vietnam's offshore, respectively. Alkaline aerosols were observed during the Northeast and Southwest monsoons, with upwind sources originating in South China, Thailand, and Cambodia. The emergence of the ammonium-rich source areas in South China may be attributed to China's sustained emission control measures, targeting acidic SO2 and NOx emissions while leaving alkaline NH3 emissions largely unaffected. This research provided insights into the intricate relationships between regional emissions, long-range transport, and local meteorological-driven emissions, offering valuable guidance for effective air quality management in urban environments.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Atmospheric Pollution Research
Atmospheric Pollution Research ENVIRONMENTAL SCIENCES-
CiteScore
8.30
自引率
6.70%
发文量
256
审稿时长
36 days
期刊介绍: Atmospheric Pollution Research (APR) is an international journal designed for the publication of articles on air pollution. Papers should present novel experimental results, theory and modeling of air pollution on local, regional, or global scales. Areas covered are research on inorganic, organic, and persistent organic air pollutants, air quality monitoring, air quality management, atmospheric dispersion and transport, air-surface (soil, water, and vegetation) exchange of pollutants, dry and wet deposition, indoor air quality, exposure assessment, health effects, satellite measurements, natural emissions, atmospheric chemistry, greenhouse gases, and effects on climate change.
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信