BTEX concentration and health risk assessment in automobile workshops

IF 3.9 3区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES
{"title":"BTEX concentration and health risk assessment in automobile workshops","authors":"","doi":"10.1016/j.apr.2024.102306","DOIUrl":null,"url":null,"abstract":"<div><p>This study focused on the measurement of BTEX (benzene, toluene, ethylbenzene, and xylene) concentrations in the air of indoor and outdoor environments of automobile workshops in Damghan, Iran. Air samples from twenty-five workshops were actively collected and analyzed using Gas Chromatography-Flame Ionization Detection (GC-FID). The results showed that the concentrations of BTEX were higher in the indoor air compared to the outdoor air. The highest mean concentration of benzene (153.22 ± 34.21 μg m<sup>−3</sup>), toluene (94.41 ± 25.25 μg m<sup>−3</sup>), and xylenes (385.38 ± 34.21 μg m<sup>−3</sup>) was found in auto paint (AP) workshops, while the highest mean concentration of ethylbenzene (43.39 ± 12.57 μg m<sup>−3</sup>) was observed in auto body (AB) workshops. The significant negative correlations between benzene, ethylbenzene, xylene isomers, and relative humidity (RH) indicated that controlling humidity is an effective strategy. The mean inhalation lifetime cancer risk (LTCR) for benzene in both indoor and outdoor air of all automobile workshops exceeded the EPA (Environmental Protection Agency) recommended limits. The highest mean LTCR values for benzene and ethylbenzene were observed in the AP (3.24E10-4) and AB (2.95E10-5) workshops, respectively. The hazard quotient (HQ) of benzene and Xylene in the indoor air of the AP and AB workshops was &gt;1, which indicates that the non-carcinogenic risks associated with exposure to these compounds are considerable. This study underscores the need for international attention to BTEX pollution in automobile workshops, highlighting the global health risks. The findings provide crucial data for developing strategies to mitigate these risks and protect workers’ health.</p></div>","PeriodicalId":8604,"journal":{"name":"Atmospheric Pollution Research","volume":null,"pages":null},"PeriodicalIF":3.9000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atmospheric Pollution Research","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S130910422400271X","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

This study focused on the measurement of BTEX (benzene, toluene, ethylbenzene, and xylene) concentrations in the air of indoor and outdoor environments of automobile workshops in Damghan, Iran. Air samples from twenty-five workshops were actively collected and analyzed using Gas Chromatography-Flame Ionization Detection (GC-FID). The results showed that the concentrations of BTEX were higher in the indoor air compared to the outdoor air. The highest mean concentration of benzene (153.22 ± 34.21 μg m−3), toluene (94.41 ± 25.25 μg m−3), and xylenes (385.38 ± 34.21 μg m−3) was found in auto paint (AP) workshops, while the highest mean concentration of ethylbenzene (43.39 ± 12.57 μg m−3) was observed in auto body (AB) workshops. The significant negative correlations between benzene, ethylbenzene, xylene isomers, and relative humidity (RH) indicated that controlling humidity is an effective strategy. The mean inhalation lifetime cancer risk (LTCR) for benzene in both indoor and outdoor air of all automobile workshops exceeded the EPA (Environmental Protection Agency) recommended limits. The highest mean LTCR values for benzene and ethylbenzene were observed in the AP (3.24E10-4) and AB (2.95E10-5) workshops, respectively. The hazard quotient (HQ) of benzene and Xylene in the indoor air of the AP and AB workshops was >1, which indicates that the non-carcinogenic risks associated with exposure to these compounds are considerable. This study underscores the need for international attention to BTEX pollution in automobile workshops, highlighting the global health risks. The findings provide crucial data for developing strategies to mitigate these risks and protect workers’ health.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Atmospheric Pollution Research
Atmospheric Pollution Research ENVIRONMENTAL SCIENCES-
CiteScore
8.30
自引率
6.70%
发文量
256
审稿时长
36 days
期刊介绍: Atmospheric Pollution Research (APR) is an international journal designed for the publication of articles on air pollution. Papers should present novel experimental results, theory and modeling of air pollution on local, regional, or global scales. Areas covered are research on inorganic, organic, and persistent organic air pollutants, air quality monitoring, air quality management, atmospheric dispersion and transport, air-surface (soil, water, and vegetation) exchange of pollutants, dry and wet deposition, indoor air quality, exposure assessment, health effects, satellite measurements, natural emissions, atmospheric chemistry, greenhouse gases, and effects on climate change.
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信