Camille Oger , Tereza Pavlíčková , Valérie Bultel-Poncé , Alexandre Guy , Jean-Marie Galano , Ullrich Jahn , Thierry Durand
{"title":"An update of isoprostanoid nomenclature","authors":"Camille Oger , Tereza Pavlíčková , Valérie Bultel-Poncé , Alexandre Guy , Jean-Marie Galano , Ullrich Jahn , Thierry Durand","doi":"10.1016/j.plipres.2024.101301","DOIUrl":null,"url":null,"abstract":"<div><p>Polyunsaturated fatty acids (PUFAs) play numerous roles in living organisms but are also prone to rapid aerobic oxidation, resulting in the production of a wide range of isomeric metabolites called oxylipins. Among these, isoprostanes, discovered in the 1990s, are formed non-enzymatically from ω–3 and ω–6 PUFAs with 16 to 22 carbon atoms. Over nearly 35 years of research, two nomenclature systems for isoprostanes have been proposed and have evolved. However, as research progresses, certain aspects of the current nomenclature remain unclear and require further clarification to ensure precise identification of each metabolite and its corresponding parent PUFA. Therefore, we propose an update to the current nomenclature system, along with practical guidelines for assessing isoprostanoid diversity and identifying their PUFA origins.</p></div>","PeriodicalId":20650,"journal":{"name":"Progress in lipid research","volume":"96 ","pages":"Article 101301"},"PeriodicalIF":14.0000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0163782724000341/pdfft?md5=e8fbece4968164131730ac5196e58dd6&pid=1-s2.0-S0163782724000341-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in lipid research","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0163782724000341","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Polyunsaturated fatty acids (PUFAs) play numerous roles in living organisms but are also prone to rapid aerobic oxidation, resulting in the production of a wide range of isomeric metabolites called oxylipins. Among these, isoprostanes, discovered in the 1990s, are formed non-enzymatically from ω–3 and ω–6 PUFAs with 16 to 22 carbon atoms. Over nearly 35 years of research, two nomenclature systems for isoprostanes have been proposed and have evolved. However, as research progresses, certain aspects of the current nomenclature remain unclear and require further clarification to ensure precise identification of each metabolite and its corresponding parent PUFA. Therefore, we propose an update to the current nomenclature system, along with practical guidelines for assessing isoprostanoid diversity and identifying their PUFA origins.
期刊介绍:
The significance of lipids as a fundamental category of biological compounds has been widely acknowledged. The utilization of our understanding in the fields of biochemistry, chemistry, and physiology of lipids has continued to grow in biotechnology, the fats and oils industry, and medicine. Moreover, new aspects such as lipid biophysics, particularly related to membranes and lipoproteins, as well as basic research and applications of liposomes, have emerged. To keep up with these advancements, there is a need for a journal that can evaluate recent progress in specific areas and provide a historical perspective on current research. Progress in Lipid Research serves this purpose.