{"title":"As-deposited and dewetted Cu layers on plasma treated glass: Adhesion study and its effect on biological response","authors":"","doi":"10.1016/j.apsadv.2024.100639","DOIUrl":null,"url":null,"abstract":"<div><p>Improving the adhesion of nanosized copper films to a glass substrate is vital for their application in electronics and medicine, as it enhances their overall reliability. For this purpose, we employed Ar plasma etching (240 s) and magnetron sputtering to create copper layers on a glass substrate. Furthermore, we investigated the effect of subsequent solid state dewetting (at 300 °C) of Cu nanolayers on the interface stability. Increasing the sputtering time resulted in elevated copper concentration, UV-Vis absorption, conductivity, and surface roughness. The as-deposited and dewetted samples exhibited very good wettability with water contact angles below 60°. Importantly, plasma treatment improved the adhesion of the Cu layers to the glass. Subsequent dewetting accelerated surface diffusion and the oxidation of Cu atoms, causing structural and morphological changes. The presence of CuO after dewetting caused loss of the surface plasmon resonance (SPR) band in the UV-Vis spectrum and a decrease in sample conductivity due to the transformation of the copper layer from a metal to an oxide. Biological testing revealed a more pronounced bactericidal effect for the as-deposited Cu layer against <em>E. coli</em> and <em>S. epidermidis</em> on contrary to dewetted samples. The similar cytotoxic trend was observed for human dermal fibroblasts and hepatocytes. Nonetheless, biological testing confirmed better cell adhesion on dewetted Cu layers compared to the as-deposited ones. Therefore, our copper nanostructured samples could find application as antibacterial coatings of biomedical devices.</p></div>","PeriodicalId":34303,"journal":{"name":"Applied Surface Science Advances","volume":null,"pages":null},"PeriodicalIF":7.5000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666523924000679/pdfft?md5=2695b3f3616979de16ee15129a68ad7b&pid=1-s2.0-S2666523924000679-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Surface Science Advances","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666523924000679","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Improving the adhesion of nanosized copper films to a glass substrate is vital for their application in electronics and medicine, as it enhances their overall reliability. For this purpose, we employed Ar plasma etching (240 s) and magnetron sputtering to create copper layers on a glass substrate. Furthermore, we investigated the effect of subsequent solid state dewetting (at 300 °C) of Cu nanolayers on the interface stability. Increasing the sputtering time resulted in elevated copper concentration, UV-Vis absorption, conductivity, and surface roughness. The as-deposited and dewetted samples exhibited very good wettability with water contact angles below 60°. Importantly, plasma treatment improved the adhesion of the Cu layers to the glass. Subsequent dewetting accelerated surface diffusion and the oxidation of Cu atoms, causing structural and morphological changes. The presence of CuO after dewetting caused loss of the surface plasmon resonance (SPR) band in the UV-Vis spectrum and a decrease in sample conductivity due to the transformation of the copper layer from a metal to an oxide. Biological testing revealed a more pronounced bactericidal effect for the as-deposited Cu layer against E. coli and S. epidermidis on contrary to dewetted samples. The similar cytotoxic trend was observed for human dermal fibroblasts and hepatocytes. Nonetheless, biological testing confirmed better cell adhesion on dewetted Cu layers compared to the as-deposited ones. Therefore, our copper nanostructured samples could find application as antibacterial coatings of biomedical devices.