Yuntian Zou , Liwei Jiang , Huijing Bai , Jiali Liu , Chi Fang , Jun Zhu , Qi Shao , Jinghong Xu , Xiangyang Zhou , Wei Quan
{"title":"Vector magnetometry employing a rotating RF field in a single-beam optically pumped magnetometer","authors":"Yuntian Zou , Liwei Jiang , Huijing Bai , Jiali Liu , Chi Fang , Jun Zhu , Qi Shao , Jinghong Xu , Xiangyang Zhou , Wei Quan","doi":"10.1016/j.sna.2024.115901","DOIUrl":null,"url":null,"abstract":"<div><p>Magnetic field vector information is crucial for many advanced applications, such as navigation and biomedical imaging. However, existing methods often lack high sensitivity or require complex setups. This study addresses these challenges by proposing a novel vector magnetometry method using a single-beam optically pumped magnetometer. A rotating radio-frequency field is innovatively utilized to excite atomic spin precession, enabling accurate measurement of the magnetic field direction based on scalar measurement. The method is tested through physical experiments with different magnetic field configurations to validate its performance. The experimental results demonstrate high accuracy, and achieve a magnetic field amplitude sensitivity of 800 fT/Hz<span><math><msup><mrow></mrow><mrow><mn>1</mn><mo>/</mo><mn>2</mn></mrow></msup></math></span>, an azimuth sensitivity of 100 <span><math><mi>μ</mi></math></span>rad/Hz<span><math><msup><mrow></mrow><mrow><mn>1</mn><mo>/</mo><mn>2</mn></mrow></msup></math></span>, and a polar angle sensitivity of 13 <span><math><mi>μ</mi></math></span>rad/Hz<span><math><msup><mrow></mrow><mrow><mn>1</mn><mo>/</mo><mn>2</mn></mrow></msup></math></span>. The proposed method facilitates sensor miniaturization and is suitable for applications in high magnetic field environments, such as geomagnetic field.</p></div>","PeriodicalId":21689,"journal":{"name":"Sensors and Actuators A-physical","volume":"379 ","pages":"Article 115901"},"PeriodicalIF":4.1000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors and Actuators A-physical","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0924424724008951","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Magnetic field vector information is crucial for many advanced applications, such as navigation and biomedical imaging. However, existing methods often lack high sensitivity or require complex setups. This study addresses these challenges by proposing a novel vector magnetometry method using a single-beam optically pumped magnetometer. A rotating radio-frequency field is innovatively utilized to excite atomic spin precession, enabling accurate measurement of the magnetic field direction based on scalar measurement. The method is tested through physical experiments with different magnetic field configurations to validate its performance. The experimental results demonstrate high accuracy, and achieve a magnetic field amplitude sensitivity of 800 fT/Hz, an azimuth sensitivity of 100 rad/Hz, and a polar angle sensitivity of 13 rad/Hz. The proposed method facilitates sensor miniaturization and is suitable for applications in high magnetic field environments, such as geomagnetic field.
期刊介绍:
Sensors and Actuators A: Physical brings together multidisciplinary interests in one journal entirely devoted to disseminating information on all aspects of research and development of solid-state devices for transducing physical signals. Sensors and Actuators A: Physical regularly publishes original papers, letters to the Editors and from time to time invited review articles within the following device areas:
• Fundamentals and Physics, such as: classification of effects, physical effects, measurement theory, modelling of sensors, measurement standards, measurement errors, units and constants, time and frequency measurement. Modeling papers should bring new modeling techniques to the field and be supported by experimental results.
• Materials and their Processing, such as: piezoelectric materials, polymers, metal oxides, III-V and II-VI semiconductors, thick and thin films, optical glass fibres, amorphous, polycrystalline and monocrystalline silicon.
• Optoelectronic sensors, such as: photovoltaic diodes, photoconductors, photodiodes, phototransistors, positron-sensitive photodetectors, optoisolators, photodiode arrays, charge-coupled devices, light-emitting diodes, injection lasers and liquid-crystal displays.
• Mechanical sensors, such as: metallic, thin-film and semiconductor strain gauges, diffused silicon pressure sensors, silicon accelerometers, solid-state displacement transducers, piezo junction devices, piezoelectric field-effect transducers (PiFETs), tunnel-diode strain sensors, surface acoustic wave devices, silicon micromechanical switches, solid-state flow meters and electronic flow controllers.
Etc...