Low frequency vibration monitoring of wind turbine tower based on optical fiber sensor and its potential for internet of things

IF 4.1 3区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Yuliang Jia , Jia-Wei Zhang , Zifan Ye , Lin Fu , Bin Zhang , Fouad Belhora
{"title":"Low frequency vibration monitoring of wind turbine tower based on optical fiber sensor and its potential for internet of things","authors":"Yuliang Jia ,&nbsp;Jia-Wei Zhang ,&nbsp;Zifan Ye ,&nbsp;Lin Fu ,&nbsp;Bin Zhang ,&nbsp;Fouad Belhora","doi":"10.1016/j.sna.2024.115891","DOIUrl":null,"url":null,"abstract":"<div><p>Among all renewable energy sources, wind energy is a cost-effective alternative energy source. The majority of wind turbines are built in harsh environments due to their power generation characteristics, which is one of the prime reasons resulting in frequent failures of wind turbine. Among various failures, the vibration of wind turbine tower cannot be ignored because it is a precursor of the failure of the wind turbine. The electrical vibration sensors have the problems of power supply and electromagnetic interference for the condition assessment of wind turbine tower. A vibration sensor based on optical Fabry-Perot (F-P) interference principle with high sensitivity is designed, fabricated and characterized to further meet the requirements of vibration detection of wind turbine tower. The mechanical simulation model of the diaphragm and optical vibration platform is constructed to verify the sensing characteristic of the F-P optical fiber vibration sensor (OFVS). The experiment results indicate a resonant frequency of the F-P OFVS of 223 Hz, an output sensitivity of 122.22 mV/m·s<sup>−2</sup> at 10 Hz, and a horizontal output of less than 6 %. In addition, the designed F-P OFVS possesses the superiorities of compact structure, passive and excellent anti-electromagnetic interference, and has a wide application prospect in the vibration detection of the wind turbine tower.</p></div>","PeriodicalId":21689,"journal":{"name":"Sensors and Actuators A-physical","volume":"379 ","pages":"Article 115891"},"PeriodicalIF":4.1000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors and Actuators A-physical","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0924424724008859","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Among all renewable energy sources, wind energy is a cost-effective alternative energy source. The majority of wind turbines are built in harsh environments due to their power generation characteristics, which is one of the prime reasons resulting in frequent failures of wind turbine. Among various failures, the vibration of wind turbine tower cannot be ignored because it is a precursor of the failure of the wind turbine. The electrical vibration sensors have the problems of power supply and electromagnetic interference for the condition assessment of wind turbine tower. A vibration sensor based on optical Fabry-Perot (F-P) interference principle with high sensitivity is designed, fabricated and characterized to further meet the requirements of vibration detection of wind turbine tower. The mechanical simulation model of the diaphragm and optical vibration platform is constructed to verify the sensing characteristic of the F-P optical fiber vibration sensor (OFVS). The experiment results indicate a resonant frequency of the F-P OFVS of 223 Hz, an output sensitivity of 122.22 mV/m·s−2 at 10 Hz, and a horizontal output of less than 6 %. In addition, the designed F-P OFVS possesses the superiorities of compact structure, passive and excellent anti-electromagnetic interference, and has a wide application prospect in the vibration detection of the wind turbine tower.

基于光纤传感器的风力涡轮机塔架低频振动监测及其在物联网中的应用潜力
在所有可再生能源中,风能是一种具有成本效益的替代能源。由于其发电特性,大多数风力涡轮机都建在恶劣的环境中,这也是导致风力涡轮机故障频发的主要原因之一。在各种故障中,风力涡轮机塔架的振动不容忽视,因为它是风力涡轮机故障的前兆。电气振动传感器在对风力涡轮机塔架进行状态评估时存在供电和电磁干扰问题。为了进一步满足风力涡轮机塔架振动检测的要求,我们设计、制造并表征了一种基于光学法布里-珀罗(F-P)干涉原理的高灵敏度振动传感器。建立了膜片和光学振动平台的机械仿真模型,以验证 F-P 光纤振动传感器(OFVS)的传感特性。实验结果表明,F-P 光纤振动传感器的谐振频率为 223 Hz,10 Hz 时的输出灵敏度为 122.22 mV/m-s-2,水平输出小于 6%。此外,所设计的 F-P OFVS 还具有结构紧凑、无源、抗电磁干扰能力强等优点,在风力发电机塔架的振动检测方面具有广阔的应用前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Sensors and Actuators A-physical
Sensors and Actuators A-physical 工程技术-工程:电子与电气
CiteScore
8.10
自引率
6.50%
发文量
630
审稿时长
49 days
期刊介绍: Sensors and Actuators A: Physical brings together multidisciplinary interests in one journal entirely devoted to disseminating information on all aspects of research and development of solid-state devices for transducing physical signals. Sensors and Actuators A: Physical regularly publishes original papers, letters to the Editors and from time to time invited review articles within the following device areas: • Fundamentals and Physics, such as: classification of effects, physical effects, measurement theory, modelling of sensors, measurement standards, measurement errors, units and constants, time and frequency measurement. Modeling papers should bring new modeling techniques to the field and be supported by experimental results. • Materials and their Processing, such as: piezoelectric materials, polymers, metal oxides, III-V and II-VI semiconductors, thick and thin films, optical glass fibres, amorphous, polycrystalline and monocrystalline silicon. • Optoelectronic sensors, such as: photovoltaic diodes, photoconductors, photodiodes, phototransistors, positron-sensitive photodetectors, optoisolators, photodiode arrays, charge-coupled devices, light-emitting diodes, injection lasers and liquid-crystal displays. • Mechanical sensors, such as: metallic, thin-film and semiconductor strain gauges, diffused silicon pressure sensors, silicon accelerometers, solid-state displacement transducers, piezo junction devices, piezoelectric field-effect transducers (PiFETs), tunnel-diode strain sensors, surface acoustic wave devices, silicon micromechanical switches, solid-state flow meters and electronic flow controllers. Etc...
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信