{"title":"Two-dimensional graphyne monolayers as substrate discs of piezoelectric nanogenerators: A hybrid atomistic-continuum model study","authors":"Masoumeh Shavikloo, Asghar Esmaeili","doi":"10.1016/j.sna.2024.115889","DOIUrl":null,"url":null,"abstract":"<div><p>The different phases of α-, β-, and γ-graphyne, which are new types of two-dimensional carbon allotropes, hold promise as potential candidates for designing substrate discs in piezoelectric nanogenerators. Accurate modeling of the bending rigidity and stretching properties as well as resonance frequencies of these materials is crucial for engineering applications like nano-resonator and nanogenerator systems. This step is imperative in designing and advancing future applications involving these structures. This study aims to create a hybrid atomistic-continuum model for modeling graphyne monolayers used as substrate discs in nanogenerators. The model integrates the benefits of both atomistic and continuum approaches. Based on the results, α-graphyne is the least mechanically stable, while γ-graphyne is the most stable. However, in terms of vibration frequency, α-graphyne has the highest frequency while γ-graphyne has the lowest. Therefore, β-graphyne, with moderate stability and resonance frequency, is recommended as the ideal choice for the substrate disc in piezoelectric nanogenerators. It can function within the Q-F frequency range (30–140 GHz) and induce deformation in the piezoelectric shim as well as generation voltage.</p></div>","PeriodicalId":21689,"journal":{"name":"Sensors and Actuators A-physical","volume":"379 ","pages":"Article 115889"},"PeriodicalIF":4.1000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors and Actuators A-physical","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0924424724008835","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
The different phases of α-, β-, and γ-graphyne, which are new types of two-dimensional carbon allotropes, hold promise as potential candidates for designing substrate discs in piezoelectric nanogenerators. Accurate modeling of the bending rigidity and stretching properties as well as resonance frequencies of these materials is crucial for engineering applications like nano-resonator and nanogenerator systems. This step is imperative in designing and advancing future applications involving these structures. This study aims to create a hybrid atomistic-continuum model for modeling graphyne monolayers used as substrate discs in nanogenerators. The model integrates the benefits of both atomistic and continuum approaches. Based on the results, α-graphyne is the least mechanically stable, while γ-graphyne is the most stable. However, in terms of vibration frequency, α-graphyne has the highest frequency while γ-graphyne has the lowest. Therefore, β-graphyne, with moderate stability and resonance frequency, is recommended as the ideal choice for the substrate disc in piezoelectric nanogenerators. It can function within the Q-F frequency range (30–140 GHz) and induce deformation in the piezoelectric shim as well as generation voltage.
期刊介绍:
Sensors and Actuators A: Physical brings together multidisciplinary interests in one journal entirely devoted to disseminating information on all aspects of research and development of solid-state devices for transducing physical signals. Sensors and Actuators A: Physical regularly publishes original papers, letters to the Editors and from time to time invited review articles within the following device areas:
• Fundamentals and Physics, such as: classification of effects, physical effects, measurement theory, modelling of sensors, measurement standards, measurement errors, units and constants, time and frequency measurement. Modeling papers should bring new modeling techniques to the field and be supported by experimental results.
• Materials and their Processing, such as: piezoelectric materials, polymers, metal oxides, III-V and II-VI semiconductors, thick and thin films, optical glass fibres, amorphous, polycrystalline and monocrystalline silicon.
• Optoelectronic sensors, such as: photovoltaic diodes, photoconductors, photodiodes, phototransistors, positron-sensitive photodetectors, optoisolators, photodiode arrays, charge-coupled devices, light-emitting diodes, injection lasers and liquid-crystal displays.
• Mechanical sensors, such as: metallic, thin-film and semiconductor strain gauges, diffused silicon pressure sensors, silicon accelerometers, solid-state displacement transducers, piezo junction devices, piezoelectric field-effect transducers (PiFETs), tunnel-diode strain sensors, surface acoustic wave devices, silicon micromechanical switches, solid-state flow meters and electronic flow controllers.
Etc...