Modeling virus-stimulated proliferation of CD4+ T-cell, cell-to-cell transmission and viral loss in HIV infection dynamics

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Jiawei Deng , Hongying Shu , Lin Wang , Xingfu Zou
{"title":"Modeling virus-stimulated proliferation of CD4+ T-cell, cell-to-cell transmission and viral loss in HIV infection dynamics","authors":"Jiawei Deng ,&nbsp;Hongying Shu ,&nbsp;Lin Wang ,&nbsp;Xingfu Zou","doi":"10.1016/j.mbs.2024.109302","DOIUrl":null,"url":null,"abstract":"<div><p>Human immunodeficiency virus (HIV) can persist in infected individuals despite prolonged antiretroviral therapy and it may spread through two modes: virus-to-cell and cell-to-cell transmissions. Understanding viral infection dynamics is pivotal for elucidating HIV pathogenesis. In this study, we incorporate the loss term of virions, and both virus-to-cell and cell-to-cell infection modes into a within-host HIV model, which also takes into consideration the proliferation of healthy target cells stimulated by free viruses. By constructing suitable Lyapunov function and applying geometric methods, we establish global stability results of the infection free equilibrium and the infection persistent equilibrium, respectively. Our findings highlight the crucial role of the basic reproduction number in the threshold dynamics. Moreover, we use the loss rate of virions as the bifurcation parameter to investigate stability switches of the positive equilibrium, local Hopf bifurcation, and its global continuation. Numerical simulations validate our theoretical results, revealing rich viral dynamics including backward bifurcation, saddle–node bifurcation, and bistability phenomenon in the sense that the infection free equilibrium and a limit cycle are both locally asymptotically stable. These insights contribute to a deeper understanding of HIV dynamics and inform the development of effective therapeutic strategies.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0025556424001627","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Human immunodeficiency virus (HIV) can persist in infected individuals despite prolonged antiretroviral therapy and it may spread through two modes: virus-to-cell and cell-to-cell transmissions. Understanding viral infection dynamics is pivotal for elucidating HIV pathogenesis. In this study, we incorporate the loss term of virions, and both virus-to-cell and cell-to-cell infection modes into a within-host HIV model, which also takes into consideration the proliferation of healthy target cells stimulated by free viruses. By constructing suitable Lyapunov function and applying geometric methods, we establish global stability results of the infection free equilibrium and the infection persistent equilibrium, respectively. Our findings highlight the crucial role of the basic reproduction number in the threshold dynamics. Moreover, we use the loss rate of virions as the bifurcation parameter to investigate stability switches of the positive equilibrium, local Hopf bifurcation, and its global continuation. Numerical simulations validate our theoretical results, revealing rich viral dynamics including backward bifurcation, saddle–node bifurcation, and bistability phenomenon in the sense that the infection free equilibrium and a limit cycle are both locally asymptotically stable. These insights contribute to a deeper understanding of HIV dynamics and inform the development of effective therapeutic strategies.

模拟艾滋病毒感染动态过程中病毒刺激的 CD4+ T 细胞增殖、细胞间传播和病毒丢失
尽管长期接受抗逆转录病毒治疗,人类免疫缺陷病毒(HIV)仍可在感染者体内持续存在,并可能通过两种模式传播:病毒到细胞和细胞到细胞的传播。了解病毒感染动态对于阐明 HIV 的发病机制至关重要。在本研究中,我们将病毒的损失项、病毒到细胞和细胞到细胞的感染模式纳入了宿主内 HIV 模型,该模型还考虑了游离病毒刺激健康靶细胞增殖的情况。通过构建合适的 Lyapunov 函数和应用几何方法,我们分别建立了无感染平衡和持续感染平衡的全局稳定性结果。我们的研究结果强调了基本繁殖数量在阈值动力学中的关键作用。此外,我们使用病毒损失率作为分岔参数,研究了正平衡、局部霍普夫分岔及其全局延续的稳定性开关。数值模拟验证了我们的理论结果,揭示了丰富的病毒动力学,包括后向分叉、鞍节点分叉和双稳态现象,即无感染平衡和极限循环都是局部渐近稳定的。这些见解有助于加深对艾滋病毒动力学的理解,并为制定有效的治疗策略提供依据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信