{"title":"Classification of AO/OTA 31A/B femur fractures in X-ray images using YOLOv8 and advanced data augmentation techniques","authors":"","doi":"10.1016/j.bonr.2024.101801","DOIUrl":null,"url":null,"abstract":"<div><p>Femur fractures are a significant worldwide public health concern that affects patients as well as their families because of their high frequency, morbidity, and mortality. When employing computer-aided diagnostic (CAD) technologies, promising results have been shown in the efficiency and accuracy of fracture classification, particularly with the growing use of Deep Learning (DL) approaches. Nevertheless, the complexity is further increased by the need to collect enough input data to train these algorithms and the challenge of interpreting the findings. By improving on the results of the most recent deep learning-based Arbeitsgemeinschaft für Osteosynthesefragen and Orthopaedic Trauma Association (AO/OTA) system classification of femur fractures, this study intends to support physicians in making correct and timely decisions regarding patient care. A state-of-the-art architecture, YOLOv8, was used and refined while paying close attention to the interpretability of the model. Furthermore, data augmentation techniques were involved during preprocessing, increasing the dataset samples through image processing alterations. The fine-tuned YOLOv8 model achieved remarkable results, with 0.9 accuracy, 0.85 precision, 0.85 recall, and 0.85 F1-score, computed by averaging the values among all the individual classes for each metric. This study shows the proposed architecture's effectiveness in enhancing the AO/OTA system's classification of femur fractures, assisting physicians in making prompt and accurate diagnoses.</p></div>","PeriodicalId":9043,"journal":{"name":"Bone Reports","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2352187224000688/pdfft?md5=c156380142f0c7a0c683d11234b52bc2&pid=1-s2.0-S2352187224000688-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bone Reports","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352187224000688","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0
Abstract
Femur fractures are a significant worldwide public health concern that affects patients as well as their families because of their high frequency, morbidity, and mortality. When employing computer-aided diagnostic (CAD) technologies, promising results have been shown in the efficiency and accuracy of fracture classification, particularly with the growing use of Deep Learning (DL) approaches. Nevertheless, the complexity is further increased by the need to collect enough input data to train these algorithms and the challenge of interpreting the findings. By improving on the results of the most recent deep learning-based Arbeitsgemeinschaft für Osteosynthesefragen and Orthopaedic Trauma Association (AO/OTA) system classification of femur fractures, this study intends to support physicians in making correct and timely decisions regarding patient care. A state-of-the-art architecture, YOLOv8, was used and refined while paying close attention to the interpretability of the model. Furthermore, data augmentation techniques were involved during preprocessing, increasing the dataset samples through image processing alterations. The fine-tuned YOLOv8 model achieved remarkable results, with 0.9 accuracy, 0.85 precision, 0.85 recall, and 0.85 F1-score, computed by averaging the values among all the individual classes for each metric. This study shows the proposed architecture's effectiveness in enhancing the AO/OTA system's classification of femur fractures, assisting physicians in making prompt and accurate diagnoses.
Bone ReportsMedicine-Orthopedics and Sports Medicine
CiteScore
4.30
自引率
4.00%
发文量
444
审稿时长
57 days
期刊介绍:
Bone Reports is an interdisciplinary forum for the rapid publication of Original Research Articles and Case Reports across basic, translational and clinical aspects of bone and mineral metabolism. The journal publishes papers that are scientifically sound, with the peer review process focused principally on verifying sound methodologies, and correct data analysis and interpretation. We welcome studies either replicating or failing to replicate a previous study, and null findings. We fulfil a critical and current need to enhance research by publishing reproducibility studies and null findings.