Performance of nine maize phenology models in China under historical climate change conditions

IF 5.6 1区 农林科学 Q1 AGRONOMY
{"title":"Performance of nine maize phenology models in China under historical climate change conditions","authors":"","doi":"10.1016/j.agrformet.2024.110234","DOIUrl":null,"url":null,"abstract":"<div><p>Accurate and unbiased simulation of crop phenology under various climate conditions is a necessary feature of phenology models. Nine models were evaluated for simulating the vegetative growth period (VGP) and the reproductive growth period (RGP) of maize (<em>Zea mays</em> L.) under historical climate variation. Seven models were based on a constant thermal/photothermal assumption (MAIS, SIMCOY, EPIC, MCWLA, WOFOST, Beta, CERES), and two models were based on a non-constant thermal/photothermal assumption (coupling response and adaptation model, RAM; average number of growing days, NGD). Phenology observations from 150 agrometeorological observation sites across China (1981–2021) were collected to evaluate model performance. Results showed that: (1) Most models simulated flowering and maturity dates well. Average RMSE of VGP was lower than that of RGP. Generally, models based on non-constant thermal/photothermal assumptions had lower RMSE than models based on constant thermal/photothermal assumptions; (2) Models having a fairly high development rate when temperature was slightly higher than base temperature (RAM, Beta, CERES, NGD, MAIS) had the lowest RMSE during RGP; (3) Simulations by some models had systematic biases. First, during VGP, standard deviations of flowering date simulations obtained from models with flexible temperature response curves across sites and years (EPIC, MCWLA, WOFOST, Beta, CERES, RAM) increased more slowly than the standard deviations of observations, while those of other models increased faster. Second, during RGP, unlike RMSE values from other models, those RMSE values obtained from RAM and NGD showed no significant correlation with the average growth period temperature. Our results suggest the importance of further investigating the impact of low temperatures on development rate during RGP in order to reduce systematic bias of models when applied under climate change conditions. Research efforts should be devoted to developing models that have flexible phenology response to temperature curves across sites and years.</p></div>","PeriodicalId":50839,"journal":{"name":"Agricultural and Forest Meteorology","volume":null,"pages":null},"PeriodicalIF":5.6000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Agricultural and Forest Meteorology","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168192324003472","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0

Abstract

Accurate and unbiased simulation of crop phenology under various climate conditions is a necessary feature of phenology models. Nine models were evaluated for simulating the vegetative growth period (VGP) and the reproductive growth period (RGP) of maize (Zea mays L.) under historical climate variation. Seven models were based on a constant thermal/photothermal assumption (MAIS, SIMCOY, EPIC, MCWLA, WOFOST, Beta, CERES), and two models were based on a non-constant thermal/photothermal assumption (coupling response and adaptation model, RAM; average number of growing days, NGD). Phenology observations from 150 agrometeorological observation sites across China (1981–2021) were collected to evaluate model performance. Results showed that: (1) Most models simulated flowering and maturity dates well. Average RMSE of VGP was lower than that of RGP. Generally, models based on non-constant thermal/photothermal assumptions had lower RMSE than models based on constant thermal/photothermal assumptions; (2) Models having a fairly high development rate when temperature was slightly higher than base temperature (RAM, Beta, CERES, NGD, MAIS) had the lowest RMSE during RGP; (3) Simulations by some models had systematic biases. First, during VGP, standard deviations of flowering date simulations obtained from models with flexible temperature response curves across sites and years (EPIC, MCWLA, WOFOST, Beta, CERES, RAM) increased more slowly than the standard deviations of observations, while those of other models increased faster. Second, during RGP, unlike RMSE values from other models, those RMSE values obtained from RAM and NGD showed no significant correlation with the average growth period temperature. Our results suggest the importance of further investigating the impact of low temperatures on development rate during RGP in order to reduce systematic bias of models when applied under climate change conditions. Research efforts should be devoted to developing models that have flexible phenology response to temperature curves across sites and years.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
10.30
自引率
9.70%
发文量
415
审稿时长
69 days
期刊介绍: Agricultural and Forest Meteorology is an international journal for the publication of original articles and reviews on the inter-relationship between meteorology, agriculture, forestry, and natural ecosystems. Emphasis is on basic and applied scientific research relevant to practical problems in the field of plant and soil sciences, ecology and biogeochemistry as affected by weather as well as climate variability and change. Theoretical models should be tested against experimental data. Articles must appeal to an international audience. Special issues devoted to single topics are also published. Typical topics include canopy micrometeorology (e.g. canopy radiation transfer, turbulence near the ground, evapotranspiration, energy balance, fluxes of trace gases), micrometeorological instrumentation (e.g., sensors for trace gases, flux measurement instruments, radiation measurement techniques), aerobiology (e.g. the dispersion of pollen, spores, insects and pesticides), biometeorology (e.g. the effect of weather and climate on plant distribution, crop yield, water-use efficiency, and plant phenology), forest-fire/weather interactions, and feedbacks from vegetation to weather and the climate system.
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信