Influence of electrohydrodynamics on the drying characteristics, microstructure and volatile composition of apricot abalone mushroom (Pleurotus eryngii)
Peng Guan , Changjiang Ding , Jingli Lu , Wurile Bai , Jiaqi Liu , Junjun Lian , Zhiqing Song , Hao Chen , Yun Jia
{"title":"Influence of electrohydrodynamics on the drying characteristics, microstructure and volatile composition of apricot abalone mushroom (Pleurotus eryngii)","authors":"Peng Guan , Changjiang Ding , Jingli Lu , Wurile Bai , Jiaqi Liu , Junjun Lian , Zhiqing Song , Hao Chen , Yun Jia","doi":"10.1016/j.crfs.2024.100856","DOIUrl":null,"url":null,"abstract":"<div><p>The study explored the use of current fluid dynamics drying technology for apricot abalone mushroom, examining how different output voltages (15, 25, and 35 kV) affected drying characteristics, microstructure, and volatile components. Comparisons were made with samples dried using hot air drying (HAD) and natural air drying (AD). Results revealed that HAD had the fastest drying rate at 0.29664(g·h<sup>−1</sup>). However, apricot abalone mushroom treated with electrohydrodynamic drying (EHD) maintained a color closer to fresh samples, exhibited a 21% increase in the ordered structure of protein secondary structure, a 12.5-fold increase in bound water content, and the most stable cell structure compared to HAD and AD treatments. A total of 83 volatile organic compounds were identified in the apricot abalone mushroom, with alcohols and aldehydes being the most prominent in terms of threshold and relative content, peaking in the 35 kV treatment group. These findings provide both experimental and theoretical insights into applying current fluid dynamics for drying apricot abalone mushroom.</p></div>","PeriodicalId":10939,"journal":{"name":"Current Research in Food Science","volume":null,"pages":null},"PeriodicalIF":6.2000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2665927124001825/pdfft?md5=94ade16051654e3e02d810ac019387ab&pid=1-s2.0-S2665927124001825-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Research in Food Science","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2665927124001825","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The study explored the use of current fluid dynamics drying technology for apricot abalone mushroom, examining how different output voltages (15, 25, and 35 kV) affected drying characteristics, microstructure, and volatile components. Comparisons were made with samples dried using hot air drying (HAD) and natural air drying (AD). Results revealed that HAD had the fastest drying rate at 0.29664(g·h−1). However, apricot abalone mushroom treated with electrohydrodynamic drying (EHD) maintained a color closer to fresh samples, exhibited a 21% increase in the ordered structure of protein secondary structure, a 12.5-fold increase in bound water content, and the most stable cell structure compared to HAD and AD treatments. A total of 83 volatile organic compounds were identified in the apricot abalone mushroom, with alcohols and aldehydes being the most prominent in terms of threshold and relative content, peaking in the 35 kV treatment group. These findings provide both experimental and theoretical insights into applying current fluid dynamics for drying apricot abalone mushroom.
期刊介绍:
Current Research in Food Science is an international peer-reviewed journal dedicated to advancing the breadth of knowledge in the field of food science. It serves as a platform for publishing original research articles and short communications that encompass a wide array of topics, including food chemistry, physics, microbiology, nutrition, nutraceuticals, process and package engineering, materials science, food sustainability, and food security. By covering these diverse areas, the journal aims to provide a comprehensive source of the latest scientific findings and technological advancements that are shaping the future of the food industry. The journal's scope is designed to address the multidisciplinary nature of food science, reflecting its commitment to promoting innovation and ensuring the safety and quality of the food supply.